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Abstract
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and Platania (2019) model and those proposed in Schwartz (1997) and Lucia
and Schwartz (2002). We use electricity daily futures prices from 01/07/2002 to
01/06/2023. Our main finding from the in-sample estimation is that models that
include Fourier terms to account for different types of seasonality are superior
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1 Introduction

For a large portion of history renewable energy was the only energy source people had.

That was until the mid 1800s ushered in the Industrial Revolution, when coal and other

fossil fuels gained popularity and became the most common source of energy (Karekezi

and Kithyoma, 2003). However, in the past two decades renewable energy regained

its importance. This is mainly due to the wider population becoming increasingly

aware of the dangers posed by climate change and aiming for net-zero emissions, but

also due to cost savings. The more renewable energy technologies are deployed, the

cheaper they become to implement and maintain. Power supplies such as wind, solar

and hydro are crucial in the effort to reach the carbon-neutrality (De La Peña et al.,

2022). This shift towards a cleaner and more sustainable energy future has introduced

new dynamics and complexities to the electricity sector (Zou et al., 2021). As these

natural fuels heavily depend on weather conditions and cannot be stored (Letcher et

al., 2016), their management and pricing is posing a unique risk towards ensuring the

stability of electricity markets.

To avoid a network collapse or an energy shortage, there is a need for an equi-

librium between electricity production and consumption (Casula and Masala, 2021).

Electricity futures and forwards are an essential tool in risk management and hedging

strategies for all agents operating in electricity markets and therefore it is crucial that

that their pricing accurately reflects the underlying conditions of the electricity market.

(Boroumand et al., 2015). By ensuring reliable and accurate valuation of electricity fu-

tures contracts, market participants can effectively hedge against price fluctuations and

manage their exposure to volatile renewable energy generation.

Electricity is not a traditional commodity. It is non-storable and its transportation

can be difficult, implying that it cannot be exchanged in different times because of

the lack of inventories to respond to demand shocks. This feature also implies that the

equilibrium of the system must be maintained continuously, and the production needs to

reflect the demand (Ciarreta, Lagullón, and Zárraga, 2011). Regarding both issues, non-

storability plays a significant role in pricing dynamics of these derivatives as it makes the

price highly sensitive to real-time market demand, which can be influenced by multiple

factors such as environmental conditions (time of the day, day in a week, season) and
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the business cycle (high production, low production) (Zhou et al., 2016). Additionally,

the limited capacity of building transmission lines and the possible electricity losses in

these lines imply that the transport to certain regions can be very expensive or even

impossible (Lucia and Schwartz, 2002).

We will now outline the key characteristics that define the behavior of the electricity

sector.

• Inelastic demand: The intrinsic nature of electricity for our society implies that

consumers generate an inelastic demand. When the electricity price increases,

consumers could wait for a reasonable (lower) price and then consume it. Since

electricity has become a first need asset for our economy (for both industries and

families), consumers accept the offered price, despite the existing and potential

increases. This characteristic is one of the reasons for the jumps in electricity

prices that will be discussed now.

• Jumps: One of the main differences between prices of electricity and the rest of

commodities is the presence of jumps in the electricity market. A jump appears if,

in a short time period, the price increases rapidly to revert back later to another

level (Volpe, 2009). These jumps have been analyzed by different models that, in

general, include a Poisson process. Such high volatility and frequent jumps make

it necessary to implement risk management and increase use of derivatives. See,

for instance, Johnson and Barz (1999), Knittel and Roberts (2005), Mount, Ning,

and Cai (2006), and Escribano, Peña, and Villaplana (2011).

• Possibility of negative prices: This is strongly related to the type of elec-

tricity generator. Some generators have high startup and shutdown costs as, for

instance, the natural gas steam turbine powered by coal or nuclear power plants.

As generators want to profit from high electricity prices, they can produce elec-

tricity even when the spot price is not high. As the competition among energy

producers can be very high, we can find offers with negative prices .

• Mean-reversion: As the remaining commodities, electricity is assumed to con-

verge to a certain long-term value, a consequence of a non-linear long-term trend

pattern that can be independent of short-term seasonal cycles, see Bhanot (2000),
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Karesen and Husby (2000), Lucia and Schwartz (2002), and Knittel and Roberts

(2005), among others. This reversion is also a consequence of changes in the

demand that can increase prices, implying economic incentives for the entry of

expensive generators in the electricity supply (Escribano, Peña, and Villaplana,

2011) and because the climate time evolution follows a mean-reverting process,

implying that both the demand and equilibrium prices are affected (Knittel and

Roberts, 2005).

• Seasonality: This is one of the main features in electricity market prices and

it can be intraday, weekly, monthly, quarterly, or yearly. It seems reasonable to

justify this seasonality in the dependence of the electricity consumption to indus-

trial hours (electricity consumption is higher when the production process starts,

daily or weekly, and it decreases along the week- ends) and to the yearly seasons.

This seasonality has been shown in Bhanot (2000), Lućıa and Schwartz (2002),

León and Rubia (2004), and Arango and Larsen (2011), among others. Escrib-

ano, Peña, and Villaplana (2011) also reflect weekly and monthly seasonalities by

using dummy variables and / or sinusoidal functions.

Considering unique electricity features mentioned above, our study is based on the

model proposed in Moreno, Novales, and Platania (2019) (Moreno et al. (2019), from

now on). This model assumes that commodity prices show mean-reversion and sea-

sonality. Both features are characterized by Fourier series, allowing these authors to

distinguish between long-term mean-reversion, as well as short- and medium-term sea-

sonality. Specifically, we will extend this pricing model by adding terms to the Fourier

series with the aim to enhance the model’s ability to accurately capture the dynamics of

electricity. We will empirically compare the performance of several particular cases of

the Moreno et al. (2019) model and the specifications proposed in Schwartz (1997) and

Lucia and Schwartz (2002). We will do so by analyzing both their in- and out-of-sample

performance by applying non-linear least-squares and the Kalman filter, respectively.

We will use futures contracts, the most exchanged-traded derivatives for electricity.

This paper is organized as follows. Section 2 provides a literature review to justify

the adequacy of the models that include mean-reversion and seasonality for electricity.

Section 3 briefly describes the models under analysis and Section 4 describes the sta-
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tistical methodology that will be used to estimate these models and the futures prices

that we have used. Section 5 includes the (in- and out-of-sample) empirical analysis

of all the models and discusses the results. Finally, Section 6 summarizes the main

conclusions and suggests some possible lines of future research.

2 Literature review

Fama and French (1987) proposed the expectation theory for pricing commodity futures

contracts. According to this theory, futures price for a commodity depends on two

variables; the expected spot price and the risk premium. Expected spot price is what

market participants believe the price of the commodity will be at the delivery, and risk

premium is what producers require for bearing the uncertainty of the delivery price

against the market price. This is the main starting point for a majority of futures

contracts pricing models, including the three models we will be introducing later.

This Section provides a (non-exhaustive) review of the papers that have proposed

and analyzed mean-reversion and seasonality in modeling commodity prices with special

emphasis on electricity.

Mean-reversion indicates a trend in asset prices to converge to a certain long-term

level. The intuition is that, when an asset price is higher than the convergence level, the

supply of the asset will increase, as the players with higher production cost enter the

market. This will ultimately lead to a fall in the commodity price. Similarly, low spot

price will follow decrease is supply, which will put an upward lift to the price. Lutz

(2010) discussed mean-reversion in asset prices highlighting the correlation between

spot prices and the convenience yield. Convenience yield represents the additional and

intangible benefit that the physical holder of commodity has, such as guaranteed supply,

operational flexibility and quality assurance. It reflects the markets’ expectations on

the future availability of the commodity, see Hull (2021). This is in line with the Kaldor

and Working hypothesis, which indicates that the convenience yield depends inversely

on the inventory level. Since mean-reversion seems to be empirically given for many

commodities, a lot of them start with this assumption.

This property in energy assets has been analyzed for other commodities, see Gibson
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and Schwartz (1990), Schwartz (1997), and Schwartz and Smith (2000). Gibson and

Schwartz (1990) analyzed crude oil forward contracts and considered a mean-reverting

behavior in commodity prices, modeling the convenience yield as a second stochastic

factor. Schwartz (1997) compared three stochastic mean-reverting models for com-

modity prices and provided empirical evidence of strong mean-reversion in commodity

prices. Schwartz and Smith (2000) reformulated the Gibson and Schwartz (1990) model

considering a latent convenience yield and proposed a two-factor model that allows

mean-reversion in short-term prices and uncertainty in the long-term equilibrium price.

More examples of mean-reverting models can be found in Geman and Nguyen (2005)

or Paschke and Prokopczuk (2010), among others. Besides, some models combine mean-

reversion with other empirically observed characteristics, for example including jumps

and seasonality as Cartea and Figueroa (2005) or stochastic volatility as Geman (2007).

Hylleberg (1992) defined seasonality as “the systematic, although not necessarily

regular, intra-year movement caused by the changes of the weather, the calendar, and

timing of decisions, directly or indirectly through the production and consumption deci-

sions made by the agents of the economy”. This author indicates that these decisions are

influenced by the expectations and preferences of the agents and the technology avail-

able in the economy. Thus, many commodities present seasonal fluctuations around

their equilibrium price level. For example, agricultural assets can present seasonal

variations ought to the seasonal nature of their supply and demand.

Seasonality is a common aspect taken into account by researchers when modeling the

pricing of commodity derivatives. Many authors incorporate seasonality by considering

its influence on returns and/or volatilities over time. Lucia and Schwartz (2002) cap-

tured the seasonality of electricity prices using a trigonometric deterministic function

with a yearly period. Cartea and González-Pedraz (2012) introduced a deterministic

long-term trend in the spot price process and Moreno and Platania (2015) and Moreno,

Novales, and Platania (2018) used harmonic oscillators to capture time-varying fluctu-

ations in interest rates. Moreno et al. (2019) proposed a two-factor model in which

prices revert to a time-varying mean level, represented by a Fourier series, and included

a second Fourier series in the price level.

Other authors have proposed time-varying conditional volatility models for electric-
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ity prices. For instance, León and Rubia (2004) proposed a ARIMA model for the

spot electricity price with a GARCH specification for its volatility. Weron, Bierbrauer,

and Trück (2004) used regime-switching models, Ciarreta, Lagullón and Zárraga (2011)

incorporated time-varying volatility, and Escribano, Peña, and Villaplana (2011) sug-

gested six models for different markets. Other relevant contributions are Arismendi et

al. (2016), De Jong (2006), Geman and Roncoroni (2006), or Ewald and Zou (2021).

3 The Models

This section introduces all the one-factor models that will be used in our empirical

analysis. We give a brief overview of the models found in the literature that study

commodity prices, taking into account mean-reversion, seasonality, or a combination of

both. These models will be analyzed empirically later.

3.1 Schwartz [1997]

This model incorporates mean-reversion into the calculation of commodity spot prices.

It assumes that the commodity spot price St, at time t, is given by the following

differential equation:

dSt = κ (µ− ln (St))Stdt+ σStdWt (1)

where κ denotes the speed of mean-reversion, µ is the (long-term) mean-reversion

value, σ is the diffusion coefficient, and Wt is a standard Wiener process. Note that the

last term is stochastic while the previous ones are deterministic.

Applying the Itô’s lemma to the logarithm of the spot price, Xt = ln (St), we get

d ln (St) =
1

St

dSt + 0 · dt+ 1

2

(
− 1

S2
t

)
(dSt)

2

Using equation (1), we have

d ln (St) = κ (µ− ln (St)) dt+ σdWt −
1

2

1

S2
t

σ2S2
t dt

= κ

(
µ− σ2

2κ
− ln (St)

)
dt+ σdWt (2)

6



This author assumes that the risk market price λ is constant. Let W̃t = Wt + λt

be a standard Wiener process under the risk-neutral measure P̃ . Then, equation (2)

becomes

d ln (St) = κ

(
µ− σ2

2κ
− ln (St)

)
dt+ σd(W̃t − λt)

= κ

(
µ− σ2

2κ
− σ

κ
λ− ln (St)

)
dt+ σdW̃t

Then, under the measure P̃ , the log-spot price follows the (stochastic) differential

equation

d ln (St) = κ (α̃− ln (St)) dt+ σW̃t (3)

where α̃ = µ − σ2

2κ
− σ

κ
λ is the (risk-neutral) long-term value of the log-spot price

and W̃t = Wt + λt is a standard Wiener process under the measure P̃ . The solution of

equation (3) is given by

ln (Su) = e−κ(u−t) ln (St) +
(
1− e−κ(u−t)

)
α̃ + σintut e

−κ(u−s)dW̃s

Proof: Let A(St, t) = eκt(α̃− ln (St)). Itô’s lemma implies

dA(St, t) = AStdSt + Atdt+
1

2
AStSt(dSt)

2

= −eκt (κ (α̃− ln (St)) dt+ σW̃t) + κeκt(α̃− ln (St))dt

= −eκtσdW̃t

Integrating in [t, u], we get

A(Su, u)− A(St, t) = σ

∫ u

t

eκs dW̃ (s)

Then,

eκu (α̃− ln (Su)) = eκt (α̃− ln (St)) + σ

∫ u

t

eks dW̃ (s)

Multiplying by e−κu and rearranging terms concludes the proof.

This Proposition shows that the log-spot price follows a Gaussian distribution.
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Given the filtration Ft, the first two conditional statistical moments of the log-spot

price are given as

Ẽt [ln(ST )] = Ẽ [ln(ST ) | Ft] = e−κ(T−t) ln (St) +
(
1− e−κ(T−t)

)
α̃

Ṽt [ln(ST )] = Ṽ [ln(ST ) | Ft] =
σ2

2κ

(
1− e−2κ(T−t)

)
where the variance is computed by applying the isometry property for stochastic

integrals. We can indicate two important and intuitive comments on both statistical

moments:

• The expected value of the log-spot price is a weighted average of the current price

(ln (St)) and the long-term value α̃ at which this price converges. The weights

are given by e−κ(T−t) and 1 − e−κ(T−t). Then, when time goes by, the expected

log-spot price moves from the current value and converges monotonically to the

value α̃.

• The initial variance of the log-spot price is zero and it increases with the maturity

of the futures. For long-term futures, this variance converges to
σ2

2κ
, a (bounded)

value that increases with the diffusion coefficient σ and decreases with the speed

of mean-reversion κ.

Then, the spot price follows a lognormal distribution. The delivery price of a futures

contract is the expected value of its underlying asset at a certain time later. Then,

applying the properties of the lognormal distribution, the price of the commodity futures

is given by

F (St, t, T ) = Ẽt [ST ] = exp

{
Ẽt [ln (ST )] +

1

2
Ṽt [ln (ST )]

}
= exp

{
e−κ(T−t) ln (St) +

(
1− e−κ(T−t)

)
α̃ +

σ2

4k

(
1− e−2κ(T−t)

)}

Alternatively, the log-futures price is given by:

ln (F (St, t, T )) = e−κ(T−t) ln (St) +
(
1− e−κ(T−t)

)
α̃ +

σ2

4k

(
1− e−2κ(T−t)

)
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3.2 Lucia and Schwartz [2002]

These authors proposed a model that reflects a seasonal pattern in electricity market

prices by means of dummy variables and trigonometric functions. In more detail, they

suggested a simple sinusoidal function to capture the seasonal behavior of spot and

forward electricity prices in the Nord Pool.

In short, they assume that the log-spot price can be split into two parts:

ln(St) = ft + Yt

where ft and Yt are, respectively, the determninistic and stochastic parts.

In more detail, we have the following:

• The first component, ft, is a deterministic function that models regularities in

the evolution of prices, such as a deterministic trend and any periodic behaviour.

This function is given by

ft = α + βDt + γ cos

(
(t+ φ)

2π

365

)

where α, β, γ, and φ are constants, and the dummy variable Dt takes value one

if date t is week-end or holiday, or zero otherwise

• The second component, Yt, is stochastic and it is assumed to follow a particular

continuous-time diffusion process, given by

dYt = −κYtdt+ σdW

where κ denotes the speed of mean-reversion, σ is the diffusion coefficient, and

W is a standard Wiener process.

Thus, under the risk-neutral measure P̃ , considering the risk market price λ as

constant, Yt is given by the following stochastic process:

dYt = −κ(α̃− Yt)dt+ σdW̃
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where α̃ = −σ
κ
λ and W̃t is a (risk-neutral) Wiener process.

Under the measure P̃ , in a similar way to Schwartz (1997), it is obtained that

ln (ST ) = fT + Yte
−κ(T−t) + α̃

(
1− e−κ(T−t)

)
+ σ

∫ T

t

eκ(s−t)dW̃ (s)

Computing the conditional statistical moments of this log-spot price, using F (St, t, T ) =

Ẽt [ST ], and applying properties of the lognormal distribution, the expression for the

log-futures price is:

ln (F (St, t, T )) = fT + e−κ(T−t) (ln (St)− ft) +
(
1− e−κ(T−t)

)
α̃ +

σ2

4k

(
1− e−2κ(T−t)

)

3.3 Moreno, Novales, and Platania [2019]

These authors proposed a pricing model which captures not only a short-term seasonal

component but also what they name long-term swings. These long-term swings repre-

sent long-term fluctuations around a mean-reversion level, a feature that is empirically

observed in some markets.1

As in Lucia and Schwartz (2002), the process for the log-spot price is split into two

components:

ln(St) = ft + Yt

The first term, ft, is the deterministic component that represents the seasonal be-

havior of the commodity price, which is modelled by a Fourier series:2

ft =
∞∑
n=0

Re
[
Ane

inwf t
]
, wf ∈ R+ (4)

The second term, Yt, follows a mean-reverting process which converges to z(t), a

time-dependent function that captures long-term variations:

dYt = κ (zt − Yt) dt+ σdWt (5)

1See, for instance, Mu and Ye (2015) in the case of crude oil prices.
2This series is the basic mathematical tool of harmonic analysis and allows to decompose a function

into an infinite sum of sinusoidal functions.
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where κ and σ denote, respectively, the speed of mean-reversion and the diffusion

coefficient, and Wt is a standard Wiener process. Moreover, we have:

zt =
∞∑
n=0

Re
[
Bne

inwzt
]
, wz ∈ R+ (6)

The coefficients of both Fourier series (see equations (4) and (6)), An and Bn, are

complex numbers such that An = Ax,n + iAy,n. Bn = Bx,n + iBy,n. The two terms

of these numbers denote, respectively, the amplitude and the phase of the Fourier

representations for the functions ft and zt. Note that when Bn = An = 0 we obtain the

Schwartz (1997) model and, if Bn = 0 and ft = α + βDt + γ cos
(
(t+ φ) 2π

365

)
, we get

the Lucia and Schwartz (2002) model.

Therefore, the Moreno et al. (2019) model generalizes both models and it incorpo-

rates seasonal and cyclical fluctuations as well as long-term fluctuations. These authors

obtained closed-form expressions for the values of different derivatives and analyzed the

empirical behavior of their model with data of heating oil, natural gas, and oil, and

found that their model outperformed both particular cases.

Taking a constant risk market price λ, the process (5) can be written under the

measure P̃ as

dYt = µtdt+ σdW̃t

where µt = κ (α + z̃t − Yt) , α = B0 −
σ

κ
λ, z̃t is given by equation (6), and W̃t =

Wt + λt.

The solution of this process is:

Ys = e−κ(s−t)Yt+
(
1− e−κ(s−t)

)
α+

∞∑
n=1

Re

[
κBn

κ+ inwz

(
einwzs − e−κ(s−t)+inwzt

)]
+σ

∫ s

t

e−κ(s−u)dW̃u

Hence, the conditional distribution of the log-spot price is Gaussian with expectation
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and variance

Ẽt [ln (St)] =fT + e−κ(T−t) (ln (St)− ft) +
(
1− e−κ(T−t)

)
α

+
∞∑
n=1

Re

[
κBn

κ+ inwz

(
einwzT − e−κ(T−t)+inwzt

)]
Ṽt [ln (St)] =

σ2

2κ

(
1− e−2κ(T−t)

)
Using F (St, t, T ) = Ẽt [ST ] and properties of the lognormal distribution, the log-

futures price is:

ln (F (St, t, T )) =fT + e−κ(T−t) (ln (St)− ft) +
(
1− e−κ(T−t)

)
α +

σ2

4k

(
1− e−2κ(T−t)

)
+

∞∑
n=1

Re

[
κBn

κ+ inwz

(
einwzT − e−κ(T−t)+inwzt

)]
(7)

We can interpret the components of this expression as follows:

ln (F (St, t, T )) = fT − e−κ(T−t)ft︸ ︷︷ ︸
Short- and mid-term seasonal component

+ e−κ(T−t) ln (St)︸ ︷︷ ︸
Spot price correction

+
σ2

4k

(
1− e−2κ(T−t)

)︸ ︷︷ ︸
Volatility effect

+
(
1− e−κ(T−t)

)
α +

∞∑
n=1

Re

[
κBn

κ+ inwz

(
einwzT − e−κ(T−t)+inwzt

)]
︸ ︷︷ ︸

Long-term swing

Alternatively, we can express the log-futures price as the sum of two terms:

ln (Ft (St, t, T )) = M (St, t, T ; θ) +N(t, T ; θ)

where

M (St, t, T ; θ) = e−κ(T−t) ln (St) +
(
1− e−κ(T−t)

)
α +

σ2

4κ

(
1− e−2κ(T−t)

)
is the component that models the behavior of spot prices (used by Schwartz (1997)

and Lucia and Schwartz (2002)) and

N(t, T ; θ) = fT − e−κ(T−t)ft +
∞∑
n=1

Re

[
κBn

κ+ inwz

(
einwzT − e−κ(T−t)+inwzt

)]
12



is the component that includes the seasonal effect of prices and represents the novel

aspect of this model when compared to the preceding models.

Moreno et al. (2019) proposed the following two particular cases:

• Particular case 1

The simplest case is when we consider a single term of the Fourier series to

represent the long-term swing. Thus, N(t, T ; θ) results:

N(t, T ; θ) = Re

[
κB

κ+ iwz

(
eiwzT − e−κ(T−t)+iwzt

)]

• Particular case 2

We add a term to the Fourier series, a single frequency for ft that models the

seasonal behavior. Therefore, N(t, T ; θ) results:

N(t, T ; θ) = Re
[
A
(
eiwf,1T − e−κ(T−t)+iwf,1t

)]
+Re

[
κB

κ+ iwz

(
eiwzT − e−κ(T−t)+iwzt

)]

Del Campo and Moreno (2018) proposed a new particular case for agricultural

commodities:

• Particular case 3

These authors considered two frequencies for the short- and mid-term seasonal

component and just one frequency for the long-term swing:

N(t, T ; θ) =
∑
l=1,2

Re
[
Al

(
eiwf,lT − e−κ(T−t)+iwf,lt

)]
+Re

[
κB

κ+ iwz

(
eiwzT − e−κ(T−t)+iwzt

)]

Balado-Alves and Moreno (2019) modeled the futures market for CO2 emission

allowances and proposed the following four specifications:

• Particular case 4

This case assumes three frequencies in the Fourier series and one for the long-term

swing, thus:

N(t, T ; θ) =
∑

l=1,2,3

Re
[
Al

(
eiwf,lT − e−κ(T−t)+iwf,lt

)]
+Re

[
κB

κ+ iwz

(
eiwzT − e−κ(T−t)+iwzt

)]
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• Particular cases 5, 6, and 7

These cases consider no long-term swing and, respectively, 1, 2, 3 frequencies in

the Fourier series. Thus, we have the following expressions:

N(t, T ; θ) = Re
[
A
(
eiwf,1T − e−κ(T−t)+iwf,1t

)]
N(t, T ; θ) =

∑
l=1,2

Re
[
Al

(
eiwf,lT − e−κ(T−t)+iwf,lt

)]
N(t, T ; θ) =

∑
l=1,2,3

Re
[
Al

(
eiwf,lT − e−κ(T−t)+iwf,lt

)]

4 Methodology and Data

In this section, we outline the estimation approach that will be used to evaluate the

empirical performance of the previously mentioned pricing models. The assessment

involves two main steps. Firstly, we employ an in-sample non-linearleast-squares re-

gressiion to estimate the model parameters using historical data. Subsequently, we

apply the Kalman filter technique to examine the predictive ability of the models by

generating one-period-ahead forecasts. This methodology allows us to gain insights into

the accuracy and effectiveness of each model in capturing the dynamics of electricity

futures prices.

4.1 Data

For our analysis we are using daily closing prices for electricity futures taken from

the European Energy Exchange (EEX). Specifically, we are using the spot and futures

prices for the EEX-Phelix, which is the Physical Electricity Index for the German and

Austrian Market. It is issued in Euros per Megawatt hour via the Phelix Base and

Phelix Peak, which respectively represent an average daily price over all hours of the

day for the base load and only from nine in the morning to eight in the evening for the

peak load. In our case, we have based our analysis on the Phelix Base. The contract

sizes for the electricity futures vary between maturities but generally move between 720

to 745 megawatt hours.

We obtained futures prices from Eikon Thomson Reuter’s Datastream, where the
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roll-over at the end of a future’s maturity is performed automatically. The complete

sample includes data from July 1st, 2002, to June 1st, 2023. Each future in our time

series is labelled starting with the abbreviation of the exchange we used, EEX, followed

by a number that indicates the proximity to maturity. For instance, the EEX-5 indicates

an electricity future that is fifth closest to maturity.

To be emphasized is the fact that our sample includes the highly volatile and dis-

ruptive time period during the Covid-19 pandemic and later, the ongoing war between

Russia and Ukraine. Due to Russia’s status as an important exporter of oil and natural

gas, the electricity market experienced large shocks and price spikes immediately fol-

lowing the invasion of Ukraine. This is shown in Figures 1 to 6, that depict the different

time series of spot and futures prices and of which the ones that are not mentioned here

can be found in the corresponding Appendix.

Figure 1 depicts the electricity spot price movements up until July 2021. Apart

from a single spike of up to 301.54€/Mwh in July 2006 the electricity spot price has

remained relatively stable over these nineteen years.

Figure 2 extends the previous one by the last two years of our dataset and shows

the spot price from June, 2002 until June 2023. It is very apparent that the Covid-19

pandemic and the Russian invasion have heavily disrupted the electricity market, with

price spikes of up to 699.44€/Mwh in late August last year, close to 6 months after

Russia’s invasion of Ukraine.

Figure 3 puts into perspective how impactful these events were on the futures market

as it depicts the spot and futures prices for all six maturities for our whole dataset.

The extreme spikes of the EEX-6 and EEX-7 with prices of up to 1,423.82€/Mwh

coincide with the shocks in the spot market. Contracts with longer time to maturity

are more sensitive to economic shocks due to longer period of uncertainty. This also

shows how stable the electricity market was up until two years ago and how unusual

and unexpected the market movements of the last two years have been.

This feature of our dataset is also evident in Table 1 which shows the most relevant

descriptive statistics of, first, the whole sample period, then, of the data up until July

1, 2021, and finally, the data from July 1, 2021, until June 1, 2023. The very high

standard deviations and the large differences between the maxima and minima for the
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last sample period pay testament to the high volatility and uncertainty the electricity

market has experienced over the last two years. In contrast, when excluding this highly

volatile period, standard deviations are much lower and the mean is much closer to the

minima and maxima, suggesting more stable price movements and less volatility.

Another peculiarity are the very high kurtosis values for the whole dataset and the

relatively low kurtosis values for the timeframe until 01 July 2021, which suggest that

including the last two years of data introduces extreme outliers into the dataset. The

skewness is also affected by this, as, even though it is positive for both data subsets,

it relatively gets much larger when including the last two years of data and therefore

makes extremely high values more probable than extremely low ones.

Because of these characteristics of the last two years of our sample and since this

thesis’ objective is to determine which model performs best under more “regular” cir-

cumstances, we will be using the first part of our dataset, from July 1, 2002, until July

1, 2021, for our performance ranking of our chosen futures pricing models.

Table 2 provides an overview of the results of an Augmented Dickey-Fuller test on

the first part of our data until 01 July 2021 and on the second part until 01 June 2023.

As can be seen, for the series in differences, stationarity is evidenced, as all p-values

are below our significance value of 0.05. For the series in levels however, the results

differ between the two subsets of our dataset. While the time series of futures prices for

second and fourth closest to maturity futures exhibits stationarity in the first dataset,

for the second dataset, none of the futures time series exhibit stationarity in levels.

This also shows that this subset of data contains time series with less stable means and

covariances which make ordinary statistical analysis more difficult. However, as the

results show, transforming the time series in both datasets via differenciating makes

them stationary, even the more volatile second period.

4.2 In-sample analysis

Let Pjt denote the price at time t of the futures that matures at time j. For each model,

the parameter vector β = (β1, β2, β3, . . . ) will be estimated by non-linear least-squares
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regression. Then, we have the following optimization problem:

min
(
SSR

(
θ̂; θ̂m

))
=

T∑
t=1

K∑
j=1

(Pjt − β′ηj,t)
′
W (Pjt − β′ηj,t)

where θ and θm are, respectively, the vectors of structural (common for all the

models) and of cyclical parameters, K is the number of maturities, W = IK , and

β′ηj,t =
∑12

i=1 βiηij,t.

The overall structure of commodity prices is consistent across futures contracts, it

is important to note that specific seasonal and cyclical components can vary for each

maturity. We can represent a non-linear (and time-dependent) function of the structural

parameters as

Pt = ln (F (St, t, T ))− e−κ(T−t) ln (St) =
12∑
i=1

βiηij,t + ut

Note that, by definition, this variable tends to zero when time goes by. Moreover,

we have η1t = 1 − e−κ(T−t) and η2t =
1

4κ

(
1− e−2κ(T−t)

)
, that are common for all the

models.

For each model, we have the following parameters:

1. Schwartz (1997) only incorporates mean-reversion:

β1 = α̃ = µ− σ2

2κ
− σλ

κ
, β2 = σ2, βi = 0, i = 3, . . . , 12

θ = (α̃, κ, σ)

2. Lućıa and Schwartz (2002) adds a new factor to capture annual seasonality in

prices:

η3t = cos

(
(T + φ)

2π

260

)
− eκ(T−t) cos

(
(t+ φ)

2π

260

)
β1 = α̃ = µ− σλ

κ
, β2 = σ2, β3 = γ, βi = 0, i = 4, . . . , 12

θ = (α̃, κ, σ, γ, φ)

In the next three models, we have β1 = α̃, β2 = σ2. Moreover, we have the
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following:

3. Moreno et al. (2019) [Particular case 1]:

β3η3t + β4η4t = Re

[
(Bx + iBy)

κ

κ+ iwz

(
eiwzT − e−κ(T−t)+iwzκt

)]
βi = 0, i = 5, . . . , 9

θ = (α, κ, σ,Bx1 , By1 , wz)

4. Moreno et al. (2019) [Particular case 2]:

β3η3t + β4η4t = Re

[
(Bx + iBy)

κ

κ+ iwz

(
eiwzT − e−κ(T−t)+iwzκt

)]
β5η5t + β6η6t = Re

[
(Ax,1 + iAy,1) e

iwf,1t
]

βi = 0, i = 7, 8, 9

θ = (α, κ, σ,Bx1 , By1 , wz)

θm =
(
Aj

x,1, A
j
y,1, w

j
f,1

)
, j = 1, 2, . . . , K

5. Del Campo and Moreno (2018) [Particular case 3]:

β3η3t + β4η4t = Re

[
(Bx + iBy)

κ

κ+ iwz

(
eiwzT − e−κ(T−t)+iwzκt

)]
8∑

i=5

βiηit =
∑
l=1,2

Re
[
(Ax,l + iAy,l) e

iwf,lt
]

β9 = 0

6. Balado-Alves and Moreno (2019) [Particular case 4]:

β3η3,t + β4η4,t = Re

[
(Bx,1 + iBy,1)

κ

κ+ iwg

(
eiwgT − e−κ(T−t)+iwgt

)]
10∑
i=5

βiηi,t =
∑

l=1,2,3

Re
[
(Ax,l + iAy,l) e

iwf,t
]

β11 = β12 = 0
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7. Balado-Alves and Moreno (2019) [Particular case 5]:

β5η5,t + β6η6,t = Re
[
(Ax,1 + iAy,1) e

iwf,1t
]

βi = 0, i = 3, 4, 7, . . . , 12

8. Balado-Alves and Moreno (2019) [Particular case 6]:

8∑
i=5

βiηi,t =
∑
l=1,2

Re
[
(Ax,l + iAy,l) e

iwf,lt
]

βi = 0, i = 3, 4, 9, 10, 11, 12

9. Balado-Alves and Moreno (2019) [Particular case 7]:

10∑
i=5

βiηi,t =
∑

l=1,2,3

Re
[
(Ax,l + iAy,l) e

iwf,it
]

βi = 0, i = 3, 4, 11, 12

4.3 Out-of-sample analysis

As mentioned before, we will apply the Kalman filter to perform the forecasting analysis

of the models. First, we briefly describe the technique.

4.3.1 Kalman filter

The Kalman filter, introduced by Kalman (1960), is widely used tool for estimation,

as it is an algorithm that can estimate both observable and unobservable parameters

with great accuracy and in real-time. The limitation of this model however, is that

it assumes that no observable variable can affect unobservable states or variables. As

future spot prices are unobservable, we perform the predictive analysis by applying this

methodology that is adequate for latent variables and has been chosen against other

alternatives due to its quickness and ease of implementation, see Galli and Lautier

(2004). This technique has been widely used in studies as Schwartz (1997), Manoliu

and Tompaidis (1999), Schwartz and Smith (2000), or Moreno et al. (2019), among

others.
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This filter is a recursive algorithm that, as new information arrives, sequentially

updates the linear projection of a system of variables on the set of available information.

This allows to numerically evaluate a likelihood function, generating estimates of the

latent unobservable variables. For this purpose, we must represent the corresponding

model in the state-space formulation. Following Hamilton (1994), we get

ξt+1 = Fξt + νt+1 (State equation)

yt = A′xt +H ′ξt + ωt (Observation equation)
(8)

where ξt is a vector of unobservable variables while yt and xt include observable vari-

ables. Specifically, xt contains exogenous variables, i.e., it does not contain information

about ξt+s or ωt+s that is not already contained in the lags of the variable yt.

4.3.2 Kalman filter specification

The daily closing prices of futures contracts are determined by averaging the prices

observed during the final minutes of the trading session. As a result, futures prices are

generally more smooth when compared to the spot prices. It is important to consider

that spot prices incorporate some level of noise. To address this, we employ the Kalman

filter technique to estimate the spot price, St, at a given time t, and use this estimation

to predict the spot price St+1 for the subsequent period.

In our case, we obtain the following equations:

ln (St+1) = G+ F ln (St) + νt+1 (State equation)

ln (F (St, t, T )) = A′xt + e−κ(T−t) ln (St) + ωt (Observation equation)

where E (vtv
′
t) = Q and E (ωtω

′
t) = R, being Q and R constants.

The matrices included in the observation equation are

A′ =
(

α σ2

4κ
γ γ Bx By Ax Ay Ax,2 Ay,2 Ax,3 Ay,3

)
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xt =



1− e−κ(T−t)

1− e−2κ(T−t)

cos

(
(T + φ)

2π

260

)
−e−κ(T−t) cos

(
(t+ φ)

2π

260

)
κ cos (wzT ) + wz sin (wzT )− e−κ(T−t) [κ cos (wzt) + wz sin (wzt)]

−κ sin (wzT ) + wz cos (wzT )− e−κ(T−t) [wz cos (wzt)− κ sin (wzt)]

cos (ωfT )− e−κ(T−t) cos (ωf t)

e−κ(T−t) sin (ωf t)− sin (ωfT )

cos (ωf2T )− e−κ(T−t) cos (ωf2t)

e−κ(T−t) sin (ωf2t)− sin (ωf2T )

cos (ωf3T )− e−κ(T−t) cos (ωf3t)

e−κ(T−t) sin (ωf3t)− sin (ωf3T )


Thus, each model will be related to the following rows of the matrices A′ and xt:

• Model 1: Rows 1 and 2.

• Model 2: Rows 1 to 4.

• Model 3: Rows 1, 2, 5 and 6.

• Model 4: Rows 1, 2, and 5 to 8.

• Model 5: Rows 1, 2, and 5 to 10.

• Model 6: Rows 1, 2, and 5 to 12.

• Model 7: Rows 1, 2, 7, and 8.

• Model 8: Rows 1, 2, and 7 to 10.

• Model 9: Rows 1, 2, and 7 to 12.

For each model, we will compute predictions for each quarter of 2020. This particu-

lar year was chosen because it represents the most recent period before the disruptions

caused by both the Covid-19 pandemic and the Russian invasion of Ukraine. As men-

tioned before, we first need to determine the initial state and parameters of the model.
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To do so, we take the previous year worth of data (01-01-2019 to 01-01-2020) to cali-

brate the model, exception are frequency parameters ω of the Fourier series, which we

determine based on the full sample. Once the model is calibrated, we can obtain daily

one-day-ahead prices for each quarter. The Kalman filter operates recursively, updating

the state estimates and making predictions as new data becomes available. Therefore,

it provides more accurate and refined estimates of the system’s state over time. After

predicting a quarter, we re-calibrate the model with new three month’s worth of data

and get new predictions, which we ultimately compare against the real observed values.

5 Empirical Analysis

5.1 In-sample Analysis

We now present and discuss the in-sample results obtained for electricity futures. We

consider four measures of goodness-of-fit:

• Residual sum of squares (RSS):
∑T

t=1 minSCR
(
θ̂t

)
=

∑T
t=1 û

2
t .

• Residual Standard Error (RSE):

(
1

n

∑n
t=1 ût

)1/2

.

• Mean absolute error (MAE):
1

n

∑n
t=1 |ût|.

• Akaike information criterion (AIC): 2k − 2 ln(L̂) or, alternatively, AIC = 2k +

n · ln
(
RSS

n

)
.

The first three measures provide an assessment of the absolute goodness-of-fit of a

model, evaluating how well it fits the observed data. On the other hand, the Akaike

Information Criterion (AIC) is a relative measure that takes into account the balance

between the model’s empirical fit and its simplicity. It penalizes the inclusion of ex-

tra parameters, allowing us to compare different models. Additionally, the Residual

Squared Error (RSE) is commonly used as an approximation of the standard deviation

of the Residual Sum of Squares (RSS). It serves as a useful indicator of the model’s

predictive accuracy and the spread of the residuals.
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Table 3 shows the estimates of our parameters for each model, as well as their

measures of goodness-of-fit and Table 4 shows the relative improvement of each model

compared to the previous one or the benchmark models, split into each contract. Table

5 shows the in-sample performance ranked by both Residual Sum of Squares and the

Akaike-Information Criterion. The main results are as follows:

• Model 2: This model introduces seasonality into the analysis by incorporating a

sinusoidal function. Upon comparing it to the benchmark model (Model 1), the

improvement in terms of error reduction is relatively significant. One possible

reason for it not being much higher is that the sinusoidal function used in Model

2 assumes an annual seasonality, which might not accurately capture the true

seasonal effects present in the data.

• Model 3: This model introduces a Fourier series which aims to capture long-term

swings in the equilibrium level that prices revert to. In terms of RSS reduction

compared to the previous model, the improvement is significant. However, due

to the number of degrees of freedom increasing by one compared to the previous

model, the Akaike criterion slightly increased. It should be noted that, for the first

two futures closest to maturity, a slight worsening has been observed, -5.32% and

-6.09% respectively. This may be a signal that empirically there is no long-term

mean-reversion level for futures with such a nearness to maturity. In addition, it

is observed that improvement occurs gradually as we increase the proximity to

maturity, up until EEX-7, when the improvement is still existent and significant,

but lower than improvement observed for EEX-6.

• Model 4: This model adds a new Fourier series to capture short- and mid-term

seasonal behaviours and it does reduce the RSS significantly with respect to the

previous model. It is noticeable that largest improvement had been achieved

for the two futures with the nearest maturities, 49.33% for EEX-2 and 67.71%

for EEX-3. This indicates that adding one Fourier series captures a seasonality

period of 1 year the best in near-to-maturity futures. The long-term swing period

estimation stays the same as for the previous model, 13.6 years.

• Model 5: This model adds an extra Fourier series to capture short- and mid-term
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seasonal behaviours and it generates a significant improvement in RSS when com-

pared to the previous model. This suggests that there is a presence of seasonality

in the electricity price series, but this time the largest improvement has been

achieved for EEX-5 and EEX-6, of 29.88% and 34.89% respectively. In addi-

tion, this improvement is supported by the AIC which increased in value, as it

penalizes the introduction of more degrees of freedom.

• Model 6: This model adds a third frequency to capture short- and mid-term sea-

sonal behaviours, but the improvement over the previous model is not significant.

• Model 7: This model uses one frequency in the Fourier series to capture short-

and mid-term seasonal behaviours and no long-term swing. When comparing this

model to Model 4 (LTS + one short- and mid-term seasonality term), the results

in RSS significantly worsen for all the maturities, by -46.37% on average across

all six maturities. This suggests the presence of oscillations in the long-term

reversion value and the need to account for it.

• Model 8: This model uses two frequencies in the Fourier series to capture short-

and mid-term seasonal behaviours and no long-term swing. As expected, this

model outperforms Model 7 significantly, however in under performs Model 5

(LTS + 2 Fourier series for mid- and short-term seasonalities). Eliminating the

LTS again proves to worsen the results.

• Model 9: This model adds a new frequency for short term seasonality and sig-

nificantly redues RSS when comparing to the previous model. However, when

comparing it with Model 6 (LTS + 3 Fourier series for mid- and short-term sea-

sonalities), there is a slight worsening in the error reduction. This might be due

to the possibility that including three Fourier series is enough to capture both

long- and medium-/short-term seasonalities.

Therefore, we conclude that Model 6 outperforms all the rest, demonstrating that

Moreno et al. (2019) surpasses the benchmark models.

24



5.2 Out-of-sample estimation

In this section, we aim to determine which model has the best predictive ability. To

do so, we will analyse the observed errors between the values estimated by each model

and their real values. The chosen out-of-sample period were the four quarters of 2020,

which left us with the most data for the calibration of the parameters of the models

whilst excluding the highly disruptive period in 2021 and beyond. Table 6 shows the

ranking of the models by cumulative squared errors, whereas Table 7 gives a detailed

overview of the generated squared errors for each model categorized by quarters and

by closeness to maturity.

For the out-of-sample analysis, Model 2 has proved to be the best, with a cumulative

error value for all contracts and quarters of 14.9779, followed by another benchmark

model, Model 1 with a cumulative error of 16.9664. This proves that the models with

the best predictive ability are not the ones with the best in-sample fit. This is also

supported by the fact that Model 6, the model with the best in-sample fit, turned

out to have the least predictive ability with a total error of 37.48. Model 5, with the

second highest in-sample fit is also relatively unsuited for out-of-sample prediction,

occupying the third-to-last place with a cumulative error of 27.03. This indicates that

some overfitting might be occurring, or a greater range of futures contracts need to be

considered for the calibration of the models.

A trend that can be observed in the out-of-sample results is that they seem to

get worse if a model combines a long-term swing with increasing seasonality terms, as

the cumulative errors for Models 4, 5 and 6 increase with each added Fourier term.

However, this trend is reversed for Models 7, 8 and 9, whose errors decrease with

each added seasonality term. This would suggest that, without the long-term swing,

adding seasonalities captures the out-of-sample values better, whereas, with the long-

term swing, adding more than one seasonality term leads to overfitting. This is also

supported by the fact that Model 4, having a long-term swing and only one seasonality,

is the third best model in terms of predictive capability. This makes it the best one

for out-of-sample forecasting out of all the models that incorporate seasonality with

Fourier terms.

This evidence suggests that models using Fourier series are not superior to the
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rest in a out-of-sample analysis, which can be seen in Table 8, which shows chosen

models ranked by their out-of-sample forecasting errors. These results are in line with

those found in papers that perform this study on other asset classes, such as Balado-

Alves and Moreno (2019) and Göransson and Moreno (2022), who analyzed futures on,

respectively, CO2 emissions and precious metals.

6 Conclusions

With renewable energy production gaining significant attention in projects that attempt

to combat the climate change, it is becoming obligatory for companies to maintain

their reputation and engage in usage of renewable energy. Due to dependency on

weather conditions and non-storability issues of renewable energy, markets of electricity

derivatives are turning into an essential part of any risk management strategy. Among

these tools, electricity futures play an important role, as they allow for a reduction

in exposure to sudden electricity price shocks by locking in a certain price ahead of

time. Modelling and forecasting electricity spot and futures prices may therefore benefit

companies investing in renewable energy projects by improving their ability to plan

ahead and better manage their price risk exposure.

Even though we have established that electricity can not be directly compared to

other commodities such as precious metals or agricultural products, it does exhibit

a certain price behaviour that can be found in all commodities. Two of these price

characteristics are mean-reversion and seasonality, which the models studied in this

thesis all account for in different ways. Specifically, we studied the in- and out-of-

sample performance of two benchmark models and seven particular cases of a third

model, proposed in Moreno, Novales and Platania (2019). This model allows for a high

flexibility as these authors propose very general types of seasonalities and, then, we can

determine whether our chosen extensions may improve the (in-sample) performance of

previous models as well as their forecasting capability.

We have used data from the European Electricity Exchange of electricity spot and

futures prices in order to compared each model’s goodness-of-fit and we have ranked

all the analyzed models in terms of their in- and out-of-sample performance. The
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main qualitative conclusion of the in-sample analysis is that models that account for

seasonality modelled by using Fourier series are clearly superior to the benchmark

models.

On the other hand, for the out-of-sample forecasting analysis, results were less

conclusive. Firstly, we should note that out-of-sample forecasting is always expected to

yield larger errors, which could be due to overfitting. The model with the least errors

when forecasting our chosen out-of-sample period of 2020 was the model proposed by

Lucia and Schwartz (2002), whereas the model with the best in-sample performance,

Model 6 (accounting for three terms of short- and medium seasonality), ended up in

last place. This suggests that accounting for different types of seasonality with Fourier

series and adding multiple terms to it in order to capture more seasonality frequencies

is useful for the in-sample analysis, but less effective for the out-of-sample forecasting.

However, iIt should be mentioned that Model 4 (incorporating a long-term swing and

one Fourier series term) placed third in the ranking for the out-of-sample performance,

perhaps suggesting that this variety of the model can be useful for electricity price

forecasting. However, further research into testing this particular model would be

required to thoroughly assess its potential for practical application.

As for further lines of research, we can suggest analysing the empirical behaviour of a

two-factor model that incorporates convenience yield as a second factor, as proposed in

Bacaicoa, Moreno, and Platania (2014). Moreover, we can also consider incorporating

non-constant or seasonal volatility, to better capture noise in the data. In our research,

we have used data from EEX (German and Austrian electricity market), however there

are few more markets that can also be explored and potentially offer different insights,

such as Nord Pool (the Nordic energy market), the NEM (National Electricity Market)

in Australia, or the PJM (Pennsylvania-New Jersey-Maryland, the U.S energy market).

Electricity will always remain directly linked to the global mission against climate

change. Knowing how its price moves over time and being able to adjust their risk

strategy accordingly will be invaluable for companies that invest in renewable energy.

By showcasing possible ways to model electricity prices and account for its intricacies,

we attempt to do our part towards achieving a more sustainable future.
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ćıclica, mimeo.

4. Balado-Alves, A. and M. Moreno (2019). Pricing of futures on CO2 emission

allowances: an empirical approach based on seasonal mean-reverting models,

mimeo.

5. Bhanot, K. (2000). Behavior of power prices: Implications for the Valuation and

Hedging of Financial Contracts, Journal of Risk, 2, 3, 43-62

6. Boroumand, R. H., S. Goutte, S. Porcher, and Th. Porcher (2015). Hedging

strategies in energy markets: The case of electricity retailers, Energy Economics,

51, 503-509.

7. Cartea, A. and M. G. Figueroa (2005). Pricing in electricity markets: a mean

reverting jump diffusion model with seasonality, Applied Mathematical Finance,

12, 4, 313-335.
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Appendix of Tables

Mean Std. Dev. Min. Max. Skewness Kurtosis

EEX-spot 57.3911 59.5674 1.52 699.44 4.8297 29.2763
EEX-2 57.8751 62.5551 17.14 674.75 4.3165 21.5623
EEX-3 60.5958 71.9207 19.19 794.03 4.7262 26.6039
EEX-4 61.9976 78.9791 20.50 1080.68 5.3681 36.0526
EEX-5 62.6775 83.9267 20.80 1151.98 5.8430 42.1090
EEX-6 62.5486 83.7787 20.81 1423.82 6.3382 53.2805
EEX-7 61.7308 76.8455 20.35 1399.87 5.9778 51.3069

Mean Std. Dev. Min. Max. Skewness Kurtosis

EEX-spot 43.3465 16.7334 1.52 301.54 2.2861 17.9002
EEX-2 41.6834 12.9432 17.14 98.41 0.9992 1.0859
EEX-3 42.4521 13.2395 19.19 96.76 0.9621 0.9224
EEX-4 42.8231 13.3368 20.50 98.23 1.0795 1.5284
EEX-5 43.0386 13.3675 20.80 101.94 1.1469 1.9662
EEX-6 43.3062 13.4833 20.81 101.00 1.1123 1.9572
EEX-7 43.4476 13.3432 20.35 102.75 1.0258 1.6993

Mean Std. Dev. Min. Max. Skewness Kurtosis

EEX-spot 196.47 120.9146 12.13 699.44 2.2861 17.9002
EEX-2 218.20 112.6927 74.26 674.75 0.9992 1.0859
EEX-3 240.24 138.2937 77.88 794.03 0.9621 0.9224
EEX-4 251.84 162.9985 81.76 1080.68 1.0795 1.5284
EEX-5 257.13 182.7749 84.93 1151.98 1.1469 1.9662
EEX-6 253.07 186.4792 81.30 1423.82 1.1123 1.9572
EEX-7 242.85 162.8098 85.22 1399.87 1.0258 1.6993

Table 1: Key statistics for electricity spot and futures prices. This Table reports
key statistics (mean, standard deviation, minimum, maximum, skewness, and kurtosis)
for 3 datasets. Starting from the top, the sample periods are: 01 July, 2002 to 01
June 2023, 01 July, 2002 to 01 July, 2021 and 01 July, 2021 to 01 June, 2023. Each
futures is indicated by the first three letters of the commodity followed by a number
that indicates the order it occupies with respect to maturity.
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û
t

) 1/
2

0
.2
3
7
4
7

0
.2
2
5
8

0
.1
9
1
1

0
.1
7
2
7

0
.1
5
6
1

0
.1
4
4

0
.2
3
3
2

0
.2
1
8
6

0
.2
0
2
7

1 n

∑ n t
=

1
|û
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EEX-2 EEX-3 EEX-4 EEX-5 EEX-6 EEX-7

Model 1

RSS 224.51 246.95 247.98 255.54 275.03 365.04

Model 2

RSS 208.71 227.30 222.50 221.45 231.84 314.12

Improvement over Model 1 7.57% 8.64% 11.45% 15.39% 18.63% 16.21%

Seasonality (years) 1 1 1 1 1 1

Model 3

RSS 220.45 242.03 160.72 153.53 153.21 223.43

Improvement over Model 2 -5.32% -6.09% 38.44% 44.24% 51.32% 40.59%

LTS (years) 13.8 13.7 13.7 13.6 13.6 13.6

Model 4

RSS 147.62 144.31 126.13 114.18 110.96 180.80

Improvement over Model 3 49.33% 67.71% 27.43% 34.46% 38.07% 23.58%

Seasonality (years) 1 1 1 1 1 1

LTS (years) 13.7 13.7 13.6 13.5 13.5 13.6

Model 5

RSS 124.55 117.99 100.55 87.9 82.26 153.21

Improvement over Model 4 18.52% 22.31% 25.43% 29.88% 34.89% 18.01%

Seasonality (years) 1 1 1 1 1 1

Seasonality (years) 5.8 5.9 6 6 6 6

LTS (years) 13.7 13.7 13.7 13.7 13.7 13.8

Model 6

RSS 122 116.65 99.84 87.21 81.19 151.94

Improvement over Model 5 2.08% 1.14% 0.72% 0.81% 1.32% 0.83%

Seasonality (years) 1 1 1 1 1 1

Seasonality (years) 5.5 5.8 5.9 6 6 6

Seasonality (years) 4.8 4.7 4.7 4.7 4.7 4.7

LTS (years) 13.6 13.7 13.7 13.7 13.7 13.7

Model 7

RSS 215.39 237.51 238.92 246.12 264.55 352.1

Improvement over Model 4 -31.46% -39.24% -47.21% -53.61% -58.06% -48.65%

Seasonality (years) 3.3 3.4 3.4 3.4 3.4 3.4

Model 8

RSS 149.17 148.51 135.68 127.23 123.84 200.39

Improvement over Model 7 44.39% 59.93% 76.08% 93.45% 113.62% 75.71%—

Improvement over Model 5 -16.50% -20.55% -25.89% -30.90% -33.58% -23.54%

Seasonality (years) 13.8 13.8 13.7 13.8 13.8 13.5

Seasonality (years) 5.8 5.8 5.9 6 6 3.5

Model 9

RSS 124.55 117.99 100.56 87.91 82.26 153.21

Improvement over Model 8 19.77% 25.87% 34.93% 44.72% 50.55% 30.79%

Improvement over Model 6 -2.04% -1.13% -0.71% -0.80% -1.30% -0.83%

Seasonality (years) 13.7 13.7 13.7 13.7 13.7 13.7

Seasonality (years) 5.8 5.9 6 6 6 6

Seasonality (years) 1 1 1 1 1 1

Table 4: In-sample analysis. Improvement of each model over the previous
ones This Table reports, for electricity futures, the Residual Sum of Squares (RSS),
the improvement of each model over the previous one, the seasonality, and the Long-
Term Swing (LTS). The in-sample period is from 01, July, 2002 to 01, July, 2021. Each
futures is indicated by the first three letters of the commodity followed by a number
that indicates the order it occupies with respect to maturity.
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Electricity futures

By RSS By AIC

Model 6 616.69 Model 6 -1.15E+05

Model 5 727.72 Model 5 -1.10E+05

Model 4 887.81 Model 4 -1.03E+05

Model 3 1086.3 Model 3 -9.85E+04

Model 9 1221.9 Model 9 -9.49E+04

Model 8 1421.2 Model 8 -9.04E+04

Model 2 1516.4 Model 2 -8.86E+04

Model 7 1617.7 Model 7 -8.66E+04

Model 1 1677.1 Model 1 -8.56E+04

Table 5: In-sample model performance ranking. This Table reports the rank-
ing of the models (in-sample performance) for the electricity futures. This ranking is
performed by computing the mean absolute error (MAE) and the Akaike information
criterion (AIC). The sample period is from 01 July, 2002 until 01 July, 2021.

Electricity
∑

u2

Model 2 14.9779

Model 1 16.9664

Model 4 19.0936

Model 9 22.1958

Model 8 25.6784

Model 3 25.7090

Model 5 27.0300

Model 7 35.4735

Model 6 37.4853

Table 6: Out-of-sample estimation ranking by cumulative error. This Table
reports the ranking of the models (out-of-sample) performance for the electricity futures.
This ranking is performed by computing the forecasting errors generated by each model
classified by quarters and closeness to maturity. The out-of-sample period is 2020.
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Model 1 Q1 Q2 Q3 Q4
∑

u2 Model 2 Q1 Q2 Q3 Q4
∑

u2

EEX-2 1.2055 2.1413 0.3674 1.3225 5.0367 EEX-2 2.0545 3.0992 0.4142 0.8431 6.411

EEX-3 0.6606 0.6551 0.1898 1.0101 2.5156 EEX-3 1.0208 0.6751 0.2768 0.5825 2.5552

EEX-4 0.2953 0.5771 0.2007 0.4073 1.4804 EEX-4 0.4373 0.5767 0.2456 0.2845 1.5441

EEX-5 0.4662 1.002 0.2123 0.1181 1.7986 EEX-5 0.4779 0.8109 0.2144 0.0848 1.588

EEX-6 0.4651 1.2976 0.1799 0.7095 2.6521 EEX-6 0.3295 0.6585 0.2994 0.1577 1.4451

EEX-7 0.4536 1.3107 0.3832 1.3355 3.483 EEX-7 0.3318 0.6246 0.2256 0.2525 1.4345∑
u2 3.5463 6.9838 1.5333 4.903 16.9664

∑
u2 4.6518 6.445 1.676 2.2051 14.9779

Model 3 Q1 Q2 Q3 Q4
∑

u2 Model 4 Q1 Q2 Q3 Q4
∑

u2

EEX-2 1.2416 3.7249 0.3788 1.4011 6.7464 EEX-2 3.8943 1.692 0.4231 0.8924 6.9018

EEX-3 0.6408 1.0618 0.1798 1.0679 2.9503 EEX-3 2.2358 0.4929 0.1947 0.4938 3.4172

EEX-4 0.235 0.3324 0.1937 0.4214 1.1825 EEX-4 0.6036 0.4493 0.3842 0.2037 1.6408

EEX-5 0.3947 0.9224 0.2241 0.1235 1.6647 EEX-5 0.2221 0.6306 0.2085 0.0601 1.1213

EEX-6 0.3827 3.3989 0.1665 0.8044 4.7525 EEX-6 0.2095 1.2193 0.5708 0.0878 2.0874

EEX-7 0.4654 6.0845 0.3213 1.5414 8.4126 EEX-7 0.3992 1.4337 1.8528 0.2394 3.9251∑
u2 3.3602 15.5249 1.4642 5.3597 25.709

∑
u2 7.5645 5.9178 3.6341 1.9772 19.0936

Model 5 Q1 Q2 Q3 Q4
∑

u2 Model 6 Q1 Q2 Q3 Q4
∑

u2

EEX-2 3.3952 0.963 0.2581 1.4878 6.1041 EEX-2 3.9284 1.1943 0.4124 2.7776 8.3127

EEX-3 1.5521 0.2921 0.1338 2.6377 4.6157 EEX-3 2.5414 0.5269 0.2534 1.1449 4.4666

EEX-4 0.5022 0.324 0.45 3.4338 4.71 EEX-4 0.6948 0.517 0.8519 4.7894 6.8531

EEX-5 0.2681 0.398 0.2894 2.1243 3.0798 EEX-5 0.2778 0.7853 0.5408 3.4127 5.0166

EEX-6 0.4715 1.2985 0.3277 1.9527 4.0504 EEX-6 0.1756 1.8613 0.3701 2.7189 5.1259

EEX-7 0.5008 0.8847 1.2883 1.7962 4.47 EEX-7 0.2577 1.8074 1.6462 3.9991 7.7104∑
u2 6.6899 4.1603 2.7473 13.4325 27.03

∑
u2 7.8757 6.6922 4.0748 18.8426 37.4853

Model 7 Q1 Q2 Q3 Q4
∑

u2 Model 8 Q1 Q2 Q3 Q4
∑

u2

EEX-2 1.9166 2.9067 2.1672 4.7552 11.7457 EEX-2 1.1585 1.8004 0.932 3.9299 7.8208

EEX-3 1.5141 0.6939 0.8974 1.8079 4.9133 EEX-3 0.5823 1.1154 0.8131 2.5838 5.0946

EEX-4 1.0882 0.3154 0.3026 0.6893 2.3955 EEX-4 0.1735 0.2959 0.3253 0.874 1.6687

EEX-5 1.0317 0.8005 0.2452 0.3142 2.3916 EEX-5 0.287 0.4338 0.2567 0.3011 1.2786

EEX-6 0.9453 2.9714 0.3749 0.9529 5.2445 EEX-6 0.2801 1.8526 0.3431 1.3916 3.8674

EEX-7 2.6257 4.2541 0.7216 1.1815 8.7829 EEX-7 0.6569 2.4643 0.6885 2.1386 5.9483∑
u2 9.1216 11.942 4.7089 9.701 35.4735

∑
u2 3.1383 7.9624 3.3587 11.219 25.6784

Model 9 Q1 Q2 Q3 Q4
∑

u2

EEX-2 1.0262 5.3118 0.1588 1.3772 7.874

EEX-3 0.5444 0.7975 0.3262 0.9564 2.6245

EEX-4 0.388 0.3901 0.2395 0.8807 1.8983

EEX-5 0.4021 0.4808 0.1749 0.2252 1.283

EEX-6 0.4589 1.5609 0.2111 1.0958 3.3267

EEX-7 0.5334 2.4389 0.326 1.891 5.1893∑
u2 3.353 10.98 1.4365 6.4263 22.1958

Table 7: Out-of-sample estimation for electricity futures. This Table reports
the forecasting errors generated by each model classified by quarters and closeness to
maturity. The out-of-sample period is the whole year of 2021. Each futures is indicated
by the first three letters of the commodity followed by a number that indicates the
order it occupies with respect to maturity.
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Appendix of Figures

Figure 1: Electricity spot prices from 01/07/2002 until 01/07/2021.

Figure 2: Electricity spot prices from 01/07/2002 until 01/06/2023.
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Figure 3: Electricity spot and futures prices from 01/07/2002 until
01/06/2023.

Figure 4: Electricity spot and futures prices from 01/07/2002 until
01/07/2021.

41



Figure 5: Electricity spot prices from 01/07/2021 until 01/06/2023.

Figure 6: Electricity spot and futures prices from 01/07/2021 until
01/06/2023.
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