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Abstract. Despite the negative externalities on the environment and human health, today’s economies

still produce excessive CO2 emissions. As a result, governments are trying to shift production and

consumption to more sustainable models that reduce the impact of CO2 emissions. The European

Union, in particular, has implemented an innovative policy to reduce CO2 emissions by creating a

market for emission rights, the Emissions Trading System (ETS). The objective of this paper is to

perform a counterfactual analysis to measure the impact of the ETS on the reduction of CO2 emissions.

For this purpose, a Statistical Machine Learning (SML) technique called Matrix Completion (MC) is

used. We apply MC to the prediction of missing counterfactual entries of a CO2 emissions matrix whose

elements (indexed row-wise by country and column-wise by year) represent emissions without ETS for

country-year pairs. The results obtained, confirmed by robust diagnostic tests, show a significant

effect of the ETS on the reduction of CO2 emissions: the majority of EU countries included in our

analysis reduced their total CO2 emissions by about 20% during the ETS treatment period 2005–2016,

compared to the total CO2 emissions that would have been achieved in the absence of the ETS policy.

Keywords: Matrix completion; Counterfactual analysis; Causal inference; Green economy; Pollution.

1 Introduction

Global warming is mainly a consequence of human activities and the use of fuels in an economic system.

Limiting carbon dioxide (CO2) emissions can be an effective way to reduce the effects of global warming

(e.g., by slowing the rise in temperature). In fact, increases in such production lead, for example, to greater

drought areas (and thus food shortages) and sea level rise (and thus a reduction in available dry land).

Global warming is a hot topic because, among other things, it causes natural disasters such as hurricanes,

floods, and droughts over large areas. They all cause persistent damage to agriculture and more generally

to the whole economic system (Tol, 2009; Van Aalst, 2006). Currently, there is an extensive economic

literature that examines various aspects related to CO2 emissions (Machado et al., 2021; Sun et al., 2022;

Zhang et al., 2023). For example, scholars have examined CO2 emissions of selected countries in relation

to economic outcomes such as Gross Domestic Product (GDP) growth (Romero-Ávila, 2008), innovation

(Chen and Lee, 2020), manufacturing output (Yang et al., 2021), trade and foreign direct investments (Ren

et al., 2014).

Emerging economies are commonly regarded as the world’s biggest polluters. Conversely, developed

countries are generally considered cleaner. This perception is also theoretically supported by the concept of

the Kuznets curve (Kuznets, 1955). Originally, the Kuznets curve was introduced to explain the existence

of an inverted “U” relationship between income inequality and GDP within countries. A few decades later,

the idea behind this particular relationship was taken up by environmental economics (Grossman and

Krueger, 1995). According to the environmental Kuznets curve, there is an inverted “U” relationship between

GDP and CO2 emissions. There are several scientific studies that empirically confirm the idea behind the



environmental Kuznets theory, which is applied to the study of emerging economies such as China in the

context of the green economy (Dong et al., 2018). The presence of the environmental Kuznets curve has also

been found in other studies, such as those by Doytch et al. (2023), Hove and Tursoy (2019), Sarkodie and

Strezov (2018) and Sugiawan and Managi (2016). However, it is worth noting that some other studies have

found no evidence for the existence of the environmental Kuznets curve or have found that its existence

is ambiguous and depends on the model specification (Al-Mulali et al., 2015; Luzzati and Orsini, 2009;

Luzzati et al., 2018). One possible explanation for the occurrence of the Kuznets curve lies in the fact

that during the first phase of industrialization, countries dramatically increase their industrial production

(without caring about pollution and environmental issues), and after the general welfare of the population

becomes higher, environmental issues are perceived as relevant. Therefore, companies are more efficient, and

policy makers (supported by public opinion) also introduce environmentally friendly legislation. In recent

years, some possible measures to mitigate climate change have been proposed by governments, international

organizations, and associations. But not all countries are taking significant action. One notable example of

a policy to reduce CO2 emissions is the Emissions Trading System (ETS), which was introduced by the

European Union (EU) in 2005 and has come into effect in various stages. The ETS sets an annual cap on

CO2 emissions for companies in certain industries. The basic idea behind this policy is that CO2 emissions

are the main cause of current global warming and that reducing CO2 emissions can lead to stopping or

slowing climate change. A significant portion of new CO2 emissions is caused by human impacts on the

environment during manufacturing, transportation, and energy production (from fossil sources) that use

large quantities of hydrocarbons. Since the amount of (EU) green certificates is set by the authorities and

a fine per ton is imposed if emissions are exceeded, the EU can effectively curb CO2 emissions. This policy

has come into force in different steps (the first was in 2005, the second in 2008, and the third in 2013).

The EU ETS policy is consistent with the 2016 Paris Agreement, which calls for a 55% reduction in CO2

emissions by 2030, using 1990 levels as the basis for calculation (Martin et al., 2016). On the other hand,

non-EU countries have implemented their CO2 reduction policies later and softer.

Although the effects of the EU ETS policy have already been studied (see the literature review in Section

1.1), an examination of the literature reveals the following gaps: (i) few studies analyzed the impact of the

EU ETS policy at the European level, while the rest of the analyses focused on specific EU countries; (ii)

the results of the analyses conducted in different papers were often contradictory; (iii) few studies used a

rigorous counterfactual analysis; (iv) typically, only the first phase of the EU ETS policy was analyzed, not

its long-term impact.

In this work, we have addressed the above gaps by using a state-of-the-art machine learning method

(namely, Matrix Completion or MC), which Athey et al. (2021) have recently shown to be a more effective

method for evaluating policies than other, more traditional methods used for panel data analysis. Our study,

therefore, highlights the need to use more reliable and general methods to estimate the impact of policies,

such as EU ETS, on pollution reduction. This issue is particularly important given the current prominence

of climate change and, more generally, environmental issues and the lessons we can draw from the EU

experience for policymakers in developing countries.

1.1 State of the art on the analysis of the EU ETS policy

The topic of the implementation of markets for emission rights, and in particular the implementation of

the one designed by the EU (ETS), has already been studied in the literature from different points of view

(Teixidó et al., 2019). One of them is the empirical analysis of the effective reduction of total CO2 emissions

in the countries of the old continent. However, there is no consensus in the current literature on the impact of

the ETS policy (Verde, 2020). One very relevant paper is certainly Calel (2020), which combines a nearest-

neighbor matching approach, between treated large plants and untreated small plants, with Difference-

in-Differences (DiD) and Difference-in-Means (DiM) estimators. However, in that work, whose analysis
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was focused on the UK from 2000 to 2012, no significant effect of UK ETS on CO2 emissions reductions

was found. In Jaraitė and Maria (2016), the impact of EU ETS on Lithuanian companies was studied by

analyzing data from 2003 to 20101. In their analysis, the authors combined nearest neighbor matching

with DiD and then applied kernel matching as a robustness check. They concluded that the ETS did not

significantly reduce CO2 emissions in Lithuania (in some treated years, only minor effects were achieved

as the old plants of the large polluters were released). A similar methodological approach was used for the

Norwegian case by Klemetsen et al. (2020)2. In that work, the authors used a fixed-effects DiD approach

and selected a control group through nearest-neighbor matching, specifically assuming exact industry-level

matching between treated and untreated firms. However, the results obtained were inconclusive. Another

stream of literature has shown that EU ETS had a positive impact on reducing CO2 emissions of selected

European countries. For example, Petrick and Wagner (2014) found a relevant reduction in CO2 production

in Germany due to an increase in the energy efficiency of plants. Their econometric methodology used

propensity score matching to weigh treated and non-treated firms. Similarly, Wagner et al. (2014) observed

a significant reduction in CO2 production in France. In our opinion, these approaches may hide a problem

in obtaining a fair evaluation of the policy, since the treated plants were quite large, while the ones in the

control group were small. As a result, there may be economies of scale in CO2 emissions that were not

captured by the models. In other words, if the control group has different characteristics (i.e., in particular,

a different order of magnitude in size) than the treated group, approaches based on (classical) matching

cannot produce an adequate control group because the control group obtained cannot be entirely similar

to the treated group. A very recent article by Dechezleprêtre et al. (2023) found a reduction of about 10%

in CO2 emissions between 2005 and 2012 in four countries studied (i.e., France, the Netherlands, Norway,

and the United Kingdom). However, in their one-to-one matching approach, it was necessary to exclude a

number of companies for which it was not possible to find a good match (e.g., large electricity production

companies). This might have biased the results of their analysis due to the possible exclusion of some of

the most important examples of potential CO2 emissions reductions. Finally, a significant methodological

improvement in studying the performance of EU ETS in reducing pollution was made by Bayer and Aklin

(2020), where researchers applied a Synthetic Control Method (SCM) at the industry level and concluded

that the presence of the EU ETS policy significantly reduced CO2 production in the EU by 3.8% between

2008 and 2016, compared to its absence. However, the SCM may fail under various circumstances, especially

if the period of pre-treatment observations is not long enough (Abadie, 2021). The SCM was also used in

(Anderson et al., 2023), where the scholars concentrated their analysis on estimating the effects on emissions

for Australia if Australia had adopted the EU ETS scheme, finding a statistically significant reduction in

the CO2 emissions per capita.

1.2 Contribution of the work

Considering the limitations of the methods discussed in the previous subsection, in our analysis we have

chosen to use another recently developed method coming from the Statistical Machine Learning literature

(SML), namely Matrix Completion (MC), in order to verify whether the results found in Bayer and Aklin

(2020) are confirmed or not with this novel approach. Moreover, our use of MC allows us to fill the four gaps

in the literature highlighted at the end of Section 1, namely: (i) the opportunity of focusing the analysis

on a larger set of countries; (ii) the necessity of using reliable estimation methods; (iii) the requirement of

performing a rigorous counterfactual analysis; (iv) the need of analyzing the various phases of the EU ETS

policy.

The main idea of MC is to minimize a suitable tradeoff between the approximation error on a set of

observed entries of a matrix (training set) and a proxy for the rank of the reconstructed matrix, e.g., its

1 Lithuania joined the EU in 2004, so 2004 was considered the pre-treatment period for all observed firms.
2 Although Norway is not an EU member, it adopted the EU ETS policy in 2008.
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nuclear norm. Matrix completion is a state-of-the-art quantitative method particularly suited for counter-

factual analyses, as recently demonstrated by Athey et al. (2021), where it was successfully compared with

other methods such as DiD and the SCM. Other successful examples of the use of MC include the works by

Metulini et al. (2022), in which MC was applied in the context of international trade for the reconstruction

of World Input-Output Database (WIOD) subtables (Timmer et al., 2015), and by Gnecco et al. (2022) and

Gnecco et al. (2023), in which MC was used for the analysis of economic complexity.

Accordingly, our main research question is to investigate whether EU countries – through the EU ETS

policy – have reduced CO2 production significantly more than the rest of the world, which is equivalent

to assessing the effectiveness of the EU ETS policy in reducing CO2 emissions. Our goal is not limited

to assessing whether or not reductions have occurred but also includes quantifying (through a robust SML

approach) the reduction in CO2 emissions due to the presence of the EU ETS policy. Specifically, we perform

a counterfactual analysis based on MC to estimate the (unobserved) CO2 emissions of EU countries in the

years of treatment in the absence of the EU ETS policy.

In this work, we aim to contribute to the academic debate by examining the impact of the EU ETS

policy on reducing CO2 emissions. This work can be viewed as a development of Huang et al. (2021) and of

our earlier conference article Biancalani et al. (2023a) on the application of MC to the prediction of CO2

emissions, each based on two different data sets3. In contrast to these papers (in which only the predictive

accuracy of MC was evaluated), here we perform a counterfactual analysis, based on MC. Moreover, this

analysis is based on a different choice of the matrix to which MC is applied, as well as an appropriate choice

of matrix elements provided as inputs to MC. We also use a different MC method that is more appropriate

for estimating causal effects. To our knowledge, no other previous work analyzed the effects of the EU ETS

policy using MC. Finally, in our analysis, we apply MC to a country-and industry-level database covering

several years in the recent past.

With the aforementioned goal in mind, in the present paper we propose to perform a counterfactual

analysis by referring to the approach used by Athey et al. (2021) (MCFE, hereafter), based on a nuclear

norm MC optimization problem, which is an extension of the optimization problem introduced by Mazumder

et al. (2010) (MC, hereafter) and solved numerically by applying the soft-impute algorithm developed in the

latter work. The MCFE method is specifically designed for panel data analysis (where the rows and columns

of the matrix may refer to individuals and time points, for example). It introduces a two-way (individual

and time) fixed effects component to the MC optimization problem to increase the performance of matrix

completion (or matrix reconstruction). The performance of MCFE compared to MC was recently evaluated

in our conference paper Metulini et al. (2023) using a simulation study for CO2 emission data. Therein, we

found that the inclusion of individual and time fixed effects in the MC optimization problem, as well as an

appropriate pre-processing of the original data achieved by applying an l1 row-normalization, increases the

predictive performance of the MC method. In particular, the latter normalization filters out the possible side

effect of differences in CO2 emission levels between countries. Therefore, also in the present work, we apply

l1 normalization by row (i.e., by country) as an appropriate preprocessing of the matrix. In summary, as

described in the next sections, our analysis finds that the EU ETS policy reduced CO2 emissions by about

20% in the European countries studied during the 2005–2016 period, ranging from no impact for Denmark

to a reduction of almost 30% for Greece.

3 The analysis made in Biancalani et al. (2023a) was further extended recently in Biancalani et al. (2023b), showing
that the predictive accuracy of MC, applied to a matrix of CO2 emissions, can be improved by combining it
with a baseline estimate (e.g., an estimate of fixed effects). In that work, an ensemble machine-learning approach
was followed, in which first the baseline estimate was generated, then MC was applied to the residual. The MC
approach by Athey et al. (2021), used in the present work, is based on a similar idea, in which fixed-effects
estimation and MC are performed simultaneously.
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1.3 Structure of the work

The work is organized as follows: Section 2 describes the available data set; Section 3 presents the method-

ology used; Section 4 shows the results obtained by applying this methodology to the pre-processed CO2

emission matrix; Section 5 concludes the work and sheds light on possible future developments.

2 Description of the data set

In this paper, we use data on total CO2 emissions (including those generated by households) by country. In

our analysis of the causal effects of the EU ETS policy (covering the period 2000–2016), we can consider EU

countries as “treated” and selected high-income non-EU countries as “untreated”, since for the latter the

potential treatment (before 2016) is limited compared to that of the EU countries (Bayer and Aklin, 2020).

The database used (Corsatea et al., 2019) can be accessed for free at https://joint-research-centre.

ec.europa.eu/document/download/b572c87b-a2fb-4ab6-af38-ff0451273e9e_en?filenameco2em56.z

ip4. It covers the period between 2000 and 2016 and 42 countries (29 European and 13 non-European). In

addition, the amount is given in thousand tons of CO2 for 56 industries and is also related to households.

Since the ETS is mandatory for EU countries, we consider the following 13 countries as “treated” for our

study: Austria (AUT), Belgium (BEL), Germany (DEU), Denmark (DNK), Spain (ESP), Finland (FIN),

France (FRA), United Kingdom (GBR)5, Greece (GRC), Ireland (IRL), Italy (ITA), Portugal (PRT), and

Sweden (SWE). All these countries were members of the EU between 2000 and 2016. We do not consider

small countries such as Cyprus, Luxembourg, and Malta, as they may be subject to small shocks (as the

cessation of production of a single plant could have a large impact on their respective total CO2 emissions).

As a control group (non-treated countries, without ETS), we consider countries that were not members of

the EU between 2000 and 2016 and that were not associated with or had special agreements with the EU

during this period (i.e., Iceland, Liechtenstein, Norway, and Switzerland are excluded)6. Our control group

for this work consists of large non-EU high-income countries in the available database that are almost in

the same phase of the Kuznets curve as selected EU countries. Specifically, we include the following five

countries in the control group: Australia (AUS), Canada (CAN), Japan (JPN), South Korea (KOR), and

the United States of America (USA). Although some non-EU countries have taken specific measures to

reduce CO2 emissions, the impact of these measures has been relatively negligible compared to the EU ETS

policy until 2016 (Narassimhan et al., 2018).

In our analysis, we aggregate the values of CO2 emissions originally available at the country-industry-

year level in the database (Corsatea et al., 2019) to the country-year level by adding the values of all sectors

and household (i.e., end-user) emissions (Missbach et al., 2023). In this way, the resulting 18 × 17 CO2

emission matrix represents the (total) amount of emissions for each country and year. The goals of this

approach are twofold. First, we reduce the computational burden of repeatedly applying MC by using a

smaller matrix as input. Second, we simplify the analysis by focusing on the aggregate level for each country.

Comparing countries, industries, and years (i.e., using three dimensions in the analysis) would make the

approach to completing the matrix much more complex, possibly calling for its extension to the tensor case

(Song et al., 2019). It could also be that the policy indirectly affected non-treated but related industries

in the treated EU countries. Therefore, to reduce the risk of possible policy transmission, we preferred to

consider countries and/or years that were not affected by EU policies as inputs to our matrix completion

approach.
4 This hyperlink was accessed in March 2023. The original 2019 version of the database, available at https:

//joint-research-centre.ec.europa.eu/system/files/2019-09/co2em56.zip, also included data on the
Netherlands (NLD), which has been removed in the updated version of the database.

5 Brexit came into effect in 2021, so the UK was a member of the EU during the study period.
6 Iceland, Liechtenstein, and Norway introduced EU ETS in 2008 (i.e., during Phase 2), while Switzerland has
several bilateral agreements with EU countries.

5
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3 Methodology

In this paper, we opt for an innovative methodological approach in the field of policy evaluation. Clearly, it

is not possible to conduct a randomized control trial because we have data on sovereign countries, and in

the specific case, our data are unlikely to focus on (pilot) policies at the national and local levels (Aron-Dine

et al., 2013; Ludwig et al., 2013). For this reason, the ideal situation of a randomized sample in which

treated subjects have ex-ante the same characteristics as untreated subjects cannot be achieved. Therefore,

we should use techniques that can provide good counterfactual data for the elements of the treated group.

When randomized controls are not available (which is the case in most policy impact analyses), various

techniques, such as Instrumental Variables (IVs), are often used in the literature to evaluate interventions.

A relevant example of the use of IVs in the context of ecological economics comes from Martelli et al.

(2018), who studied the effects of voluntary adoption of green programs on mayoral elections, using as IV

the existence of a Covenant Territorial Coordinator. They found that participation in non-mandatory green

programs at the local level was not a barrier to re-election. Another typical IV application was considered in

Binder and Neumayer (2005), where the authors examined the impact of environmental Non-Governmental

Organisations (NGOs) on air quality. In this case, IVs are represented by the number of international NGOs

per capita and membership density of international NGOs. Unfortunately, in our case, it is not possible

to find at least one valid IV among the available variables. Another technique is Regression Discontinuity

Design (RDD), which can be applied when there is at least one specific threshold that separates treated

and untreated units. For example, Soliman (2022) examined water conservation in California using three

discontinuity points in the timeline: June 2015, February 2016, and November 2016 (i.e., the dates of key

legislative events). In Doremus (2019), the author used a spatial regression discontinuity design to examine

whether the Forest Stewardship Council (FSC) has changed (or not) the standard of living of indigenous

people in Congo. For our purposes, this methodology does not appear to be applicable because there is

no sharp temporal or spatial threshold between treated and untreated countries. The use of DiD may

provide a good alternative approach (Koch and Themann, 2022), but its application requires the so-called

parallel trend assumption, which is often difficult to be met. Adjustments to the control group such as

propensity score matching (Heckman et al., 1997) and Mahalanobis distance matching and entropy (or

Hainmueller) balancing (Hainmueller, 2012) are not conclusive given the large heterogeneity and small

number of countries in our sample. These problems (especially the comparison between a small number

of states or regions) can be solved with the Synthetic Control Method (SCM). Pellegrini et al. (2021)

applied the SCM to analyze the impact of oil production in Basilicata (a small region in southern Italy) on

socioeconomic indicators. Given the peculiarity of our specific problem and data structure, in our analysis

we prefer a Matrix Completion (MC) approach for the following reasons: (i) the numerical results reported

in Athey et al. (2021) show that their proposed Matrix Completion (MC) method for policy evaluation

generally outperforms other alternative methods, such as the SCM and elastic net estimators; (ii) the MC

approach can also be interpreted as a generalization of earlier approaches such as the SCM. Indeed, these

approaches share the same objective function (the Fröbenius norm of the difference between a latent matrix

and the observed matrix), but have different constraints (which are less stringent in the case of the proposed

MC method).

For the application considered in this paper, the use of MC is justified by the fact that the counterfactual

CO2 emission levels for the treated countries (namely the EU countries) are not known in the years of

treatment when the ETS policy was in force. Therefore, based on the method introduced by Athey et al.

(2021), we use MC to generate estimates of such counterfactual values and compare them to the actual CO2

emission values, with the ultimate goal of estimating the effect of the treatment on CO2 emission values

through the ETS policy. The main idea is to consider the treated values (i.e., the CO2 emission values of

EU countries in the years of treatment) as missing values and the other entries of the CO2 emission matrix
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as given data. Specifically, in this paper, we apply the following formulation to the matrix completion fixed

effects (MCFE) optimization problem proposed by Athey et al. (2021):

minimize
M̂∈Rm×n,L̂∈Rm×n,Γ̂∈Rm×1,∆̂∈Rn×1

 1

|Ωtr|
∑

(i,j)∈Ωtr

(
Mi,j − M̂i,j

)2

+ λ∥L̂∥∗

 ,

subject to M̂ = L̂+ Γ̂1⊤
n + 1m∆̂⊤ , (1)

where

• Ωtr is a subset of pairs of indices (i, j) corresponding to the positions of known entries of a matrix

M ∈ Rm×n (using a machine learning expression, Ωtr can be called a training set of pairs of indices);

• 1n and 1m are column vectors consisting of n entries and m entries, respectively, all equal to 1;

• M̂ is the completed matrix decomposed as

M̂ = L̂+ Γ̂1⊤
n + 1m∆̂⊤ (2)

(where L̂, Γ̂ and ∆̂ must be chosen to solve the above optimization problem);

• λ ≥ 0 is a regularization constant;

• ∥L̂∥∗ is the nuclear norm of the matrix L̂, i.e., the summation of all its singular values.

The two terms Γ̂1⊤
n and 1m∆̂⊤ model, respectively, estimates of row-fixed effects (e.g., of unit-fixed effects)

and of column-fixed effects (e.g., of time-fixed effects) in the reconstruction M̂ of M according to equation

(2). The regularization constant λ controls the tradeoff between adequately fitting the known entries of the

matrixM and achieving a small nuclear norm of the first term L̂ of its reconstruction. Here, the nuclear norm

plays a similar role as the well-known l1-norm regularization term used in the well-known and widely used

Least Absolute Shrinkage and Selection Operator (LASSO) regularization method (Hastie et al., 2015). It is

worth noting that, in contrast to earlier formulations of the MC optimization problem – see, e.g., Mazumder

et al. (2010) – the nuclear norm ∥L̂∥∗ is used in the optimization problem (1) instead of the nuclear norm

∥M̂∥∗. In other words, the estimated fixed effects Γ̂1⊤
n and 1m∆̂⊤ are not regularized. In the present context,

this is an important point because otherwise, by using the alternative regularization term λ∥M̂∥∗ instead of

λ∥L̂∥∗ (i.e., by regularizing the entire reconstructed matrix M̂), one could obtain biased estimates that might

underestimate the true values (Wang et al., 2022). In other words, any estimated element M̂i,j could be a

systematic underestimate of the corresponding element Mi,j for the optimal choice of λ, making it difficult

to obtain reliable counterfactual values. As described in the literature, this is a common problem when

using regularization methods, since the LASSO regularization method may be affected by underestimation

problems (An et al., 2020; Feng et al., 2012).

In this paper, the optimization problem (1) is solved numerically by applying the soft-impute algorithm

developed by Mazumder et al. (2010) and adapted to the case of the optimization problem (1) by Athey

et al. (2021). It is worth noting that the MCFE estimator used in this work was demonstrated in Athey et al.

(2021) — using two applications to smoker data and stock market data – to outperform several alternative

methods such as DiD, SCM, vertical regression with elastic net regularization, and horizontal regression

with elastic net regularization (Athey et al., 2021).

The soft-impute algorithm for calculating the MCFE estimator goes as follows. Let the projection oper-

ator PΩtr : Rm×n → Rm×n be defined as [PΩtr(M)]i,j := Mi,j if (i, j) ∈ Ωtr, 0 otherwise. Similarly, let the

projection operator P⊥
Ωtr : Rm×n → Rm×n be defined as [P⊥

Ωtr(M)]i,j := Mi,j if (i, j) /∈ Ωtr, 0 otherwise.

For a matrix M ∈ Rm×n with rank r, let its Singular Value Decomposition (SVD) be

Sr(M) = UDrV
T , (3)
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where Dr ∈ Rr×r is a diagonal matrix, which collects the r singular values d1,. . . ,dr of M. Then, the

soft-thresholded version of the SVD of M reads as

Sλ(M) := UDλV
T , (4)

where

Dλ := diag[(d1 − λ)+, . . . , (dr − λ)+] (5)

and the subscript “+” stands for the non-negative part of a real number. According to the soft-impute

algorithm, we first initialize L̂ as L̂old = PΩtr(M) ∈ Rm×n and create a decreasing grid λ1 > · · · > λK . Let

ε > 0 denote a selected tolerance.

Then, for each k = 1, . . . ,K, set λ = λk and

1) Iterate until convergence the following:

(a) Given the current L̂ = L̂old, get Γ̂ and ∆̂ by imposing the first-order optimality conditions in the

optimization problem (1);

(b) Compute L̂new ← Sλ|Ωtr|
2

(
PΩtr(M− Γ̂1⊤

n − 1m∆̂⊤) +P⊥
Ωtr(L̂old)

)
;

(c) If
∥L̂new−L̂old∥2

F

∥L̂old∥2
F

≤ ε, go to Step 2);

(d) Set L̂old ← L̂new;

2) Set L̂λ ← L̂new and M̂λ ← L̂λ + Γ̂1⊤
n + 1m∆̂⊤.

Since it has been shown that MCFE performs better when the elements of the matrix to which it is

applied have similar magnitudes (e.g., when they are row-normalized, as in Metulini et al. (2023)), in our

application the original matrix of annual CO2 emissions is pre-processed by dividing each row (country) by

the l1-norm of that row restricted to the training set7, and multiplied by the fraction of observed entries in

that row. Then MCFE is actually applied to the resulting matrix M.

In our application, where M is derived from the 18× 17 true CO2 emission matrix, with rows referring

to countries and columns to years, the tolerance parameter ε is chosen as ε = 10−30. If convergence is not

achieved, the soft-impute algorithm is stopped after N it = 104 repetitions to reduce computation time.

In the present application, as shown in Figure 1:

• the training set Ωtr corresponds to the union of the positions of all entries for the years 2000–2004

(pre-treatment period) and 75% (randomly selected) of the positions of entries belonging to non-EU

countries in the years 2005–2016 (treatment period covered in the database);

• the validation set Ωval corresponds to the other 25% of the items of the entries belonging to non-EU

countries in 2005–2016 that are not part of the training set;

• the test set Ωtest corresponds to the items belonging to EU countries in the treatment period covered

in the database (2005–2016).

It is noteworthy that while ground truth without treatment is available for the validation set Ωval (which

refers to untreated non-EU countries), this is not true for the test set Ωtest (which refers to treated EU

countries). To generate confidence intervals and represent the best/worst scenarios for the estimates for each

treated country, MC is applied 80 times8, each time randomly selecting the training and validation sets as

described above.

In each application of MCFE, the regularization constant λ is selected via an approach similar to that

proposed by Athey et al. (2021). In particular, the optimization problem (1) is solved for multiple choices

λk for λ. To explore different scales, these values are exponentially distributed as λk = 2k/2−25, for k =

7 This restriction is applied to avoid any use of the validation and test sets in the pre-processing phase.
8 This number was chosen as a tradeoff between reducing machine processing time and a satisfactory number of
generations.
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Fig. 1. Partition of the considered matrix into training, validation and test sets. Countries are indicated on the y
axis, while years are indicated on the x axis. T stands for “Treated” and NT stands for “Non Treated”. The training
set Ωtr corresponds to the union of the positions of all entries for the years 2000–2004 and 75% (randomly selected)
of the positions of entries belonging to industrialized non-EU countries in the years 2005–2016. The validation set
Ωval corresponds to the other 25% of the positions of the entries belonging to industrialized non-EU countries in
2005–2016 that are not part of the training set. The test set Ωtest corresponds to the positions of the items belonging
to the 13 considered EU countries in 2005–2016.

1, . . . , 100. For each λk, the Root Mean Square Error (RMSE) of the matrix reconstruction on the validation

set is calculated as follows:

RMSEval
λk

:=

√√√√ 1

|Ωval|
∑

(i,j)∈Ωval

(
Mi,j − M̂λk,i,j

)2

(6)

then the choice λ◦
k that minimizes the RMSEval

λk
for k = 1, . . . , 100 is found. For each λk, the RMSE of the

matrix reconstruction on the training set (RMSEtr
λk
) is defined in a similar way, as

RMSEtr
λk

:=

√√√√ 1

|Ωtr|
∑

(i,j)∈Ωtr

(
Mi,j − M̂λk,i,j

)2

. (7)

In particular, the focus is on the values of RMSEval
λk

and RMSEtr
λk

calculated for λ = λ◦
k. Since there is

no ground truth for the counterfactual values in the test set (i.e., the values without treatment), the RMSE

for the test set is not calculated in this application of MCFE.

4 Results

The MCFE methodology described in Section 3 was applied starting from the 18 × 17 country-year level

CO2 emissions matrix where sectors are aggregated (see Section 2), and then pre-processed according to

the methodology described in Section 3.

To further motivate the adoption of the MCFE method described in Section 3 (which also includes

individual and time fixed effects), we performed some statistical tests for the presence of significant individual

and time effects in our data. More specifically, we conducted an F-test for the null hypothesis of the absence of

such effects in the context of a within regression model for panel data (Baltagi, 2008). We found a significant

9



departure from the null hypothesis of absence of individual effects (F=2.0104, p-value=0.0111). Time-fixed

effects, conditional to allowing for individual fixed effects were found to be significantly different from the

ones of the null hypothesis (F=2.8333, p-value=0.0004). Thus, the inclusion of both effects seems necessary.

In addition, it should be noted that, as also mentioned by Athey et al. (2021), the inclusion of the individual

and temporal components also aims to improve the quality of the imputation by penalizing only the residual

component of the completed matrix in the optimization problem (1) (i.e., the one obtained by filtering out

the individual and temporal components). Thus, it would make sense to include them even if the F-test

does not reject the null hypothesis. As mentioned in Section 3, not including such components would lead to

underestimates. It is worth noting that a necessary condition for obtaining credible counterfactual results is

that the MC (FE) method achieves satisfactory performance in reconstructing the original matrix without

any treatment. In the specific analysis, underestimation of the predicted values would not be recommended,

as it could lead to incorrect conclusions about the impact of the ETS policy on different EU countries.

In other words, in this context, it is crucial to avoid systematically underestimating the predicted values.

It is worth mentioning that the performance of nuclear norm-based MC methods was assessed through a

simulation study by Metulini et al. (2023) by applying such methods to the CO2 emission matrix limited to

the period 2000–2005. We found that the MCFE method proposed by Athey et al. (2021) outperformed the

MC method developed by Mazumder et al. (2010) in terms of goodness of fit (Mean Absolute Percentage

Error – MAPE – was used in that study). In particular, the MAPE of the MCFE was very low even with a

rather large number of unobserved entries in the matrix.

The following results refer to the comparison of the estimated counterfactual values (without treatment)

with the actual values (with treatment). To summarize the results of the analysis, we report our main

findings in Figure 2. The estimated CO2 emission values of the treated countries were obtained by applying

MCFE. In other words, we used MCFE to estimate CO2 emissions in the years of treatment for EU countries

(i.e., treated countries) as if they had not received the treatment. We repeated the estimation process 80

times, each time randomly splitting the untreated portion of the matrix into training and validation sets, as

described in Section 3. Then, Figure 2 shows, for the elements of the test set related to the treated countries,

the actual values of CO2 emissions (i.e., those obtained in the case of treatment) against the appropriate

statistics of the corresponding estimated values obtained by MCFE in the case of no treatment. Points

are used for the medians (black), 10th percentiles (red), and 90th percentiles (blue) of the distributions of

estimated values (obtained in the no-treatment case) in the 80 repetitions (one distribution for each treated

country). The actual values (corresponding to the case of treatment) are shown through dark green points9.

It is worth noting that the actual and estimated values presented in the figure have been row-normalized,

since the application of the MCFE method was done after performing the l1-norm row-normalization. At

first glance, we can see that the estimated values are higher than the actual values for almost all treated

countries in our analysis (except for the case of Denmark and, – to a lesser extent, – Spain and Ireland for

some consecutive years after the start of treatment). In other words, according to our results, the ETS policy

has generally reduced CO2 emissions of treated countries in the years after the end of the first treatment

phase (i.e., from 2008 onwards), as intended by the policy itself. It is worth noting that to obtain such a

result, it was necessary to use the MCFE method by Athey et al. (2021) instead of the MC method (without

fixed effects estimation) by Mazumder et al. (2010), as explained in Section 3.

A parametric t-student test for the difference between means in independent populations (paired data

t-test) was also performed to test whether the difference between actual values and estimated values was

statistically significant under the hypothesis of no treatment. The test was performed for both the raw

data and their natural logarithmic transformation (to more easily satisfy the normality assumption). To

perform this statistical test, we considered two samples (S1, with the actual values and S2, with the imputed

values) with the same sample size of n1 = n2 = 156, where 156 is the product of the number of countries

9 The numerical values corresponding to the years of treatment for the plots shown in Figure 2 are given in Table
A.1 in the Appendix.
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treated (13) and the number of years of treatment (12). For all 80 simulations performed (with both raw

and log normalized data), we rejected the null hypothesis of equal means. This simple evidence combined

with Figure 2 might suggest that the introduction of the EU ETS had a significant effect on reducing CO2

emissions. At the same time, without a further check, we cannot rule out that this preliminary result is the

consequence of using a positively biased estimator, i.e., the method used might tend to yield higher values

than the actual values. To verify that this was not the case, we compared, as a diagnostic test, the true

values and the values estimated with the MCFE method for both the training and validation sets in the

case of the untreated countries (this comparison was not possible for the test set because the counterfactual

values were not available as ground truth). If the MCFE method we used were robust (i.e., if there were no

significant overestimates or underestimates), then the true and estimated values for these countries would be

essentially indistinguishable (especially in the case of the training set). This would be particularly important

in the case of the validation set because it would rule out the overfitting of the training set. Figure 3 and

Figure 4 – referring respectively to the training set (restricted to the untreated countries after the start of

treatment for treated countries) and the validation set (which, by construction, refers only to the untreated

countries), – show that the differences between the true values and the values estimated by the MCFE were,

as expected, quite negligible.

To further verify that our main results, related to the significant reduction of CO2 emissions by the

treatment, were not affected by a systematic overestimation, we decided to perform a counter-proof as a

robustness test. To this end, we repeated the counterfactual analysis by reversing the roles of treated and

untreated countries. In other words, this time we considered the EU countries as untreated and the non-EU

countries as treated. So, for this second analysis, the (modified) test set was for the non-EU countries over

the period 2005–2016.

As can be seen in Figure 5, the treatment effects (artificial this time) remained very strong and, in

particular, we can rule out the problem of systematic overestimation of the method used, since the predicted

values on the new test set looked much lower than the observed values.

As an additional robustness check, we repeated the analysis on Figure 2 by excluding household emissions

in the calculation of total emissions (i.e., for this analysis only the emissions due to industrial activities were

considered). The obtained results, presented in Figure 6, qualitatively confirmed those already reported in

Figure 2 for the case in which household emissions were included.

To return to the original analysis, as can be seen in Figure 2, when comparing the actual values of treated

countries in the years of treatment with the medians of the corresponding counterfactual estimates10 (in

the case of no treatment) obtained by the MCFE simulations, we can conclude that the EU ETS policy was

effective in reducing CO2 emissions. This is in line with other literature such as Petrick and Wagner (2014)

and Bayer and Aklin (2020). As shown in Table A.2 in the Appendix, during the whole treatment period

covered in the database (2005–2016), the majority of the EU countries included in our analysis achieved a

ratio between the sum of the observed values and the sum of the medians of the estimated values (expressed

as a percentage) of about 80%. The smallest value (71.27%) was obtained in the case of Greece (i.e., Greece’s

CO2 emissions were reduced to almost 3/10 of the sum of the medians of the estimated counterfactual values

associated with no treatment throughout the analysis period). The largest value (100.45%) was found in

the case of Denmark (this means that the amount of CO2 emissions of Denmark did not decrease during

the whole treatment period covered in the database, i.e. 2005–2016, due to the EU ETS policy). In general,

however, we can conclude that the EU ETS policy did not have an irrelevant impact on total CO2 emissions

in the EU. According to the results of our analysis, the reduction was even larger than that estimated in

Bayer and Aklin (2020). In that paper, the authors estimated a reduction in CO2 emissions (with respect

to the case of the absence of the EU ETS policy) of about 3.8% using the SCM across the European Union

for the period 2008–2016. According to the results of our analysis (based on the medians of the estimates),

10 For simplicity, we consider here and below the medians of the estimated values instead of the estimated values
themselves, since these are random variables.
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the reduction in CO2 emissions for all EU countries included in our analysis11 was approximately 21.0%

in the same period 2008–2016 which was considered in Bayer and Aklin (2020); 17.0% in the entire 2005–

2016 treatment period (these results were obtained from the data included in Figure 7). Our results are

consistent with the large increase in CO2 emissions compared to the pre-treatment period, as shown in

Figure 4. Although both our analysis and that presented in Bayer and Aklin (2020) show positive effects of

the EU ETS policy, some differences are observed in the magnitude of the effects achieved. This result could

be explained not only by the different selection of EU countries considered in the two analyses and by the

different methods used (MC and SCM), but also by the fact that Bayer and Aklin (2020), neglecting possible

transmission effects, derived all their control and treated units within the same group of EU countries (i.e.,

their control and treated units were, respectively, economic sectors of EU countries directly affected by EU

ETS policy and other economic sectors of the same EU countries not directly affected by EU ETS policy).

Instead, our analysis is done at a more aggregate level (i.e., EU countries are treated as a whole, while the

control units are other countries outside the EU).
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Fig. 7. Total CO2 emissions of the entire group of treated EU countries. Actual values (dark green points) compared
to values calculated by MCFE for the hypothesis without EU ETS treatment (test set). Sum of medians across
treated countries (black points), sum of 10th percentiles across treated countries (red points), and sum of 90th

percentiles across treated countries (blue points) considering the 80 MCFE random simulations. The solid vertical
red line divides the period into the pre-treatment and treatment periods. The dashed vertical red line represents the
start of the second phase of ETS.

It is worth noting that our results change somewhat if we consider CO2 emissions reductions only in the

first phase of the EU ETS policy (2005–2007), as indicated in Table A.3 in the Appendix. In this case, the

11 This reduction was calculated by comparing the sum of CO2 emissions for each period for all EU countries included
in the analysis with the sum of the medians of the estimated counterfactual CO2 emissions for the same period
for all EU countries.
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reduction in CO2 emissions from the EU ETS policy was much smaller. In particular, looking at the median

estimates, the reduction in CO2 emissions across the entire group of EU countries included in the analysis

was about 4.6% in 2005–2007. Moreover, in three countries (Denmark, Spain, and Ireland) the sums of the

medians of the estimated counterfactuals were even higher than the corresponding sums of the observed

values. In the first phase of the policy, the penalty for CO2 emissions exceeding the quota was indeed small.

This fact could be a possible explanation for the lower reduction in the first years of the policy. It is also

worth noting that the projections for the 2005–2007 period were less prone to possible sources of error than

the projections for the remaining 2008–2016 period, since the period before the policy was implemented was

quite short (five years).

Nowadays, the well-being of a country is not directly related to GDP, because the environmental damage

caused by an economic system should be considered as a negative component in the well-being function

(Fleurbaey, 2009; Giannetti et al., 2015). Indeed, other indicators have been proposed in the literature,

such as the Index of Sustainable Economic Welfare (ISEW), the Genuine Progress Indicator (GPI), and

various versions of green GDP (Boyd, 2007; England, 1998; Talberth and Bohara, 2006; Xu et al., 2010). It

is beyond the scope of this paper to propose another sustainable ecological economic index. However, the

results of our analysis allow us to express in monetary terms the reduction in ecological damage resulting

from the adoption of the EU ETS policy. For example, suppose that a ton of CO2 emitted has a negative

value of 185 USD (in real terms for 2020), as recently reported in Rennert et al. (2022). If we take as an

example the case of Germany – which is considered the first producer in the Eurozone – our results show

that CO2 emissions in 2016 were about 865 million tons, while the median of the estimated counterfactual

in case of no treatment was 1,156 million tons. This means that the EU ETS policy saved about 290 million

tons in one year in Germany alone. Converting these values to monetary values and also converting them to

per capita values12, this means 652 USD per capita (real-term value for 2020). We found analogous results

(as shown in Table A.4 in the Appendix) for all other EU countries we included in our analysis: for the year

2016 we obtained about 400 – 700 USD per capita for most of them. Also for 2007, we found about 100

– 300 USD per capita for most of the treated countries. Moreover, the amount of reduced environmental

damage per capita has been shown to generally increase over time. In fact, by 2009, this amount was even

below 600 USD (except for Finland with 699 USD). The case of Denmark (and to a lesser extent the cases

of Spain and Ireland) is quite peculiar, as in some years higher values for CO2 emissions were found than

without the policy of EU ETS, but in subsequent years lower values were obtained. In the case of Denmark,

the threshold year for this change was 2011.

5 Conclusions and future research directions

CO2 emissions represent a growing problem closely related to pollution and climate change. Economic

systems produce large amounts of CO2 through the use of fossil energy. Therefore, governments are trying

to shift production to new systems in order to reduce emissions (Sgarciu et al., 2023). In this context, the

EU has introduced a market for emission rights, called the Emissions Trading Scheme (ETS), which was

launched in 2005 and further expanded in subsequent years, as the second phase began in 2008. The impact

of EU ETS on reducing CO2 emissions is still debated in the literature. In this paper, we present a new

approach to quantify the impact of EU ETS policy on CO2 emissions reductions. A counterfactual analysis

to evaluate the policy allows us to quantify the reduction in CO2 emissions from the ETS.

The novelty of our work is that we developed a state-of-the-art Statistical Machine Learning (SML)

method based on Matrix Completion (MC) for counterfactual analysis. The importance of using MC for

this task becomes clear when one considers that conventional policy evaluation methods such as matching

techniques – e.g., Propensity Score Matching (PSM), Mahalanobis and Hainmueller balancing – and the

12 Population data were taken from the World Bank’s free database available at https://data.worldbank.org/.
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Synthetic Control Method (SCM) are not always suitable for performing true policy evaluation, since in

some applications it may be nearly impossible to identify an appropriate control group for these methods.

Applying this novel method to the CO2 emissions matrix at the country level allowed us to quantitatively

assess the impact of EU ETS on reducing emissions.

Using robust statistical tests and diagnostic controls, the effect of EU ETS was found to be statistically

significant, in line with some recent contributions. Based on our analysis, the CO2 reduction from the EU

policy appears to be higher than that found in the previous literature. We believe that the previous literature

tends to underestimate the CO2 reduction because it focused on the first phase of the policy and selected

countries using less sophisticated methods to establish a valid counterfactual. We believe that overcoming

such drawbacks through the adoption of MC is a significant result in terms of policy evaluation. Moreover,

we quantified the effects of the ETS policy in monetary terms in a reduction of the environmental damage

approximately equal to 500 USD per capita in 2016 (i.e., the last observed year available for our analysis).

This finding is relevant since policies like the EU ETS are sometimes accused of representing obstacles to

production and growth. Although it is out of the scope of this article to estimate if the EU ETS policy

provoked adverse effects on “classical” economic growth, we can claim that its reduction of environmental

impact was not negligible.

For future research, we consider developing a more sophisticated model that examines (in monetary

terms) whether or not the decrease in output due to the price of CO2 emissions outweighs the reduced

environmental damage (this would require an appropriate definition of green GDP). In addition, the anal-

ysis could be extended to a less aggregate level (with larger matrices) after accelerating/parallelizing the

application of MC, as was done recently in Gnecco et al. (2023) for another application of this method. This

is important for application to the three-dimensional data set of countries, industries, and years. Finally,

more sophisticated methods could be applied to obtain an estimate of the indirect impact of the EU ETS

policy (e.g., related to carbon leakage to other non-EU countries) to better estimate the overall impact of

the EU ETS policy.
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Appendix

Table A.1 reports numerical values corresponding to the years of the treatment for the plots of Figure 2.

Austria

Year 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

Actual 84294 80342 79163 71406 65431 70132 68446 62079 61555 57325 62941 59850

10th percentile 81771 80760 84327 80457 77238 81209 83245 83638 84729 81408 83752 86626

Median 82950 82430 86446 82962 82106 84933 86031 86150 86673 84390 87873 91573

90th percentile 84955 84112 88277 84678 86183 88699 90866 90791 90957 89075 92120 96753

Belgium

Year 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

Actual 125516 122431 119281 118295 106258 113520 104000 101579 103016 97561 101607 100965

10th percentile 132209 130169 134830 129499 122788 131170 131981 129333 131787 131548 133168 136067

Median 133799 132865 137355 133094 127848 135552 136477 136985 138967 137245 138840 144497

90th percentile 139057 137067 141320 136641 133622 141473 145877 145975 146585 143200 146924 150438

Germany

Year 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

Actual 980189 988849 960745 925825 853758 898560 871378 880920 896745 855312 861048 865548

10th percentile 1052903 1039316 1078119 1030010 980542 1041355 1057904 1047753 1070843 1046505 1065863 1097260

Median 1062893 1055631 1097425 1057471 1024008 1078237 1089374 1091912 1104670 1088214 1109511 1155793

90th percentile 1098836 1081585 1123815 1080742 1069014 1122784 1160335 1159111 1160863 1136491 1167600 1204459

Denmark

Year 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

Actual 87189 104792 101229 95522 88924 87493 85286 78753 76789 71498 71812 76535

10th percentile 82470 81283 84682 80592 77077 81009 82554 82509 83966 81613 83463 86355

Median 83368 82794 86767 82730 80615 83922 85253 85464 86565 84711 87608 91444

90th percentile 85782 84521 89862 84935 85121 87330 89362 89635 90259 88945 92636 97168

Spain

Year 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

Actual 367776 359910 374958 348386 308150 295045 296509 292142 266558 270386 287768 274796

10th percentile 341089 336693 351719 335396 322318 339285 346915 348895 352493 339394 348185 360611

Median 346255 343895 361000 346380 342687 354919 359372 359719 361570 352122 365882 381945

90th percentile 355004 351409 368182 353881 361714 371290 380148 379547 380022 371518 383136 403841

Finland

Year 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

Actual 68615 80650 79619 62187 59478 67961 60504 54809 55753 51307 47855 51885

10th percentile 80735 79836 83288 79253 75778 80276 82887 84229 83613 80622 83052 86043

Median 82100 81617 85887 82269 82135 84184 85902 86197 86427 83767 87691 91456

90th percentile 84043 83489 88688 84309 87963 88127 89660 89786 90561 88362 91877 97987

France

Year 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

Actual 432515 422251 414279 413064 391160 401726 376896 377612 377373 345587 350293 350911

10th percentile 448030 441529 458317 439899 416204 443437 447986 440415 450322 444996 452265 462894

Median 452367 449243 465910 449828 433752 458782 463114 463886 469944 463569 471762 489745

90th percentile 468970 462968 478111 461209 453210 478702 493309 493869 494053 482564 497045 510220
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Great Britain

Year 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

Actual 633973 623064 615083 600149 545276 563004 524184 537303 524550 488332 474426 450554

10th percentile 637048 628770 652700 628177 596740 634151 638990 625042 639510 633524 643725 659136

Median 643758 640692 663764 642194 622070 657917 660826 663110 669142 659473 675033 701829

90th percentile 668694 662190 681554 659768 649693 686135 706409 708074 706272 690771 709408 732686

Greece

Year 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

Actual 139792 138028 142127 111113 104341 97343 94532 91418 81723 78656 74962 71373

10th percentile 138717 137096 142500 136387 130052 137578 139551 138154 140967 137689 140701 144743

Median 140139 139189 145016 139778 135439 142839 143853 144089 145676 143219 146983 153068

90th percentile 144751 142880 148329 142793 142053 148751 153297 153056 153381 150099 154408 160369

Ireland

Year 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

Actual 47425 46833 46807 46981 41811 48998 45417 46178 43933 44079 46313 49104

10th percentile 45472 45042 46601 44970 43196 45603 46034 44870 45785 45350 46169 47293

Median 46073 45904 47445 46320 44919 47349 47628 47777 48074 47306 48377 50369

90th percentile 48026 47555 48411 47535 47218 49834 51109 51357 51156 50107 50672 52610

Italy

Year 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

Actual 513883 509526 498800 487925 428896 437579 425745 402053 372699 356597 365070 359005

10th percentile 508944 503301 522977 500613 480701 505344 512051 506068 516991 505221 516598 531236

Median 514295 510638 532615 513935 498478 525329 528921 529327 535286 525581 540595 562449

90th percentile 531453 525437 544705 524873 524214 547310 563326 562905 563827 551753 567396 590320

Portugal

Year 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

Actual 71982 67336 64419 62595 58475 53819 52720 51190 49283 49364 53440 51532

10th percentile 69604 68839 71516 68307 65515 69317 70640 70412 71786 69640 70311 72929

Median 70458 70025 73005 70396 68604 72144 72694 72868 73636 72089 73554 77024

90th percentile 72958 71833 74237 71741 72083 75134 77391 77440 77329 75761 77018 80190

Sweden

Year 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016

Actual 65943 63968 62716 60166 56164 61592 57081 54286 52187 51176 51454 51765

10th percentile 73398 72368 75135 71437 67807 72214 73565 73166 74705 73166 73920 76220

Median 74120 73586 76523 73587 70928 74577 75646 75955 77152 75789 76852 80129

90th percentile 76567 74999 78640 75131 74021 77907 80094 80411 80500 78773 80977 83940

Table A.1. Comparison between actual values (in thousands of tons) and estimated counterfactual values (in
thousands of tons) for the treated countries in the years of treatment.

Table A.2 reports, for the treated countries: the sum of actual values (in thousands of tons) over the

whole period of treatment covered in the database; the sum of the medians of the estimated counterfactual

values (in thousands of tons) over the same period; their ratio (expressed as a percentage).
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Sum of Actual
(period: 2005–2016)

Sum of Estimated
(period: 2005–2016)

Sum of Actual/Sum of Estimated
(expressed as a percentage)

Austria 822964 1024517 80.33
Belgium 1314029 1633524 80.44
Germany 10838877 13015139 83.28
Denmark 1025822 1021241 100.45
Spain 3742384 4275746 87.53
Finland 740623 1019632 72.64
France 4653667 5531902 84.12
Great Britain 6579898 7899808 83.29
Greece 1225408 1719288 71.27
Ireland 553879 567541 97.59
Italy 5157778 6317449 81.64
Portugal 686155 866497 79.89
Sweden 688498 904844 76.09

Table A.2. For the treated countries: sum of actual values (in thousands of tons) over the whole period of treatment
covered in the database (Sum of Actual), sum of the medians of the estimated counterfactual values (in thousands
of tons, median is used) over the same period (Sum of Estimated), and the ratio Sum of Actual/Sum of Estimated,
expressed as a percentage.

Similarly, Table A.3 reports, for the treated countries: the sum of actual values (in thousands of tons) over

the first period of treatment; the sum of the medians of the estimated counterfactual values (in thousands

of tons) over the same period; their ratio (expressed as a percentage).

Sum of Actual
(period: 2005–2007)

Sum of Estimated
(period: 2005–2007)

Sum of Actual/Sum of Estimated
(expressed as a percentage)

Austria 243799 251826 96.81
Belgium 367228 404019 90.89
Germany 2929783 3215949 91.10
Denmark 293210 252929 115.93
Spain 1102644 1051150 104.90
Finland 228884 249604 91.70
France 1269045 1367520 92.80
Great Britain 1872120 1948214 96.09
Greece 419947 424344 98.96
Ireland 141065 139422 101.18
Italy 1522209 1557548 97.73
Portugal 203737 213488 95.43
Sweden 192627 224229 85.91

Table A.3. For the treated countries: sum of actual values (in thousands of tons) over the first period of treatment
(Sum of Actual), sum of estimated counterfactual values (in thousands of tons, median is used) over the same period
(Sum of Estimated), and the ratio Sum of Actual/Sum of Estimated, expressed as a percentage.

Table A.4 expresses the reduced damage in monetary terms per capita (in USD 2020) for the treated

EU countries during the whole treatment period covered in the database.
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Reduced damage in monetary terms per capita (expressed in USD 2020)
Year 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
Austria -30 47 162 257 370 327 388 528 548 586 534 672
Belgium 146 183 315 256 370 374 544 590 596 655 611 711
Germany 186 150 307 297 385 406 502 485 477 532 563 652
Denmark -130 -748 -490 -431 -278 -119 -1 222 322 433 514 482
Spain -91 -67 -57 -8 138 238 249 267 377 325 311 426
Finland 476 34 219 699 785 560 872 1073 1043 1100 1345 1332
France 58 78 149 106 122 162 244 243 259 329 338 385
Great Britain 30 54 147 126 228 280 400 365 417 490 570 709
Greece 6 19 48 479 518 757 822 882 1079 1097 1231 1403
Ireland -60 -40 27 -27 127 -67 89 64 166 128 81 49
Italy 1 4 107 82 218 274 321 395 499 514 535 621
Portugal -27 47 151 137 177 321 350 381 431 404 359 457
Sweden 168 196 279 269 294 256 363 421 481 470 479 529

Table A.4. Reduced damage in monetary terms per capita (expressed in USD 2020) for the treated EU countries
in the treatment period covered in the database.
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