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Abstract

We document that the monthly storage cost of oil averages 0.50% of

the spot price and varies over time. We decompose the basis, de�ned

as the ratio of the spread between the futures and spot prices over the

spot price, into the storage cost (scc) and the adjusted convenience

yield (acyc) channels. The scc dominates the mean of the basis and

accounts for nearly half of its variations. We show that the scc predicts

future inventory growth and is the main conduit through which the

predictive power of the basis for oil spot returns arises.
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I Introduction

Inventories play a key role in the literature on commodity markets. They are at the

heart of theoretical frameworks such as the theory of storage (Kaldor, 1939; Working,

1949; Brennan, 1958). Empirical studies are increasingly interested in inventory data too.

For instance, Armstrong et al. (2021) explore the impact of inventory news on market

activity, while Ederington et al. (2021) analyze the impact of cash-and-carry arbitrage

on inventory levels. Despite the central role that inventories play in the literature on

commodity markets, it is rather surprising that we know so little about the cost of storing

these inventories. Therefore, several interesting questions arise: What is the average

cost of storage? Is this cost constant or time-varying? What are the implications of the

time-series properties of the storage cost for the dynamics, economic interpretation, and

predictive power of the basis, de�ned as the ratio of the spread between the futures and

spot prices over the spot price (Boons and Prado, 2019)?

Answering these questions is important because several studies, including the recent

papers of Gu et al. (2020) and Ederington et al. (2021), assume that the cost of storage

is small and/or exhibits very little time-series variation.1 Despite the widespread nature

of these assumptions in the academic literature, we are not aware of any empirical test of

these hypotheses.2 The dearth of research on the cost of storage is likely due to the fact

that information about the cost of storage is often proprietary and not readily available

1This assumption may help explain why the literature routinely interprets the spread between the
futures and spot prices as the net convenience yield rather than net storage cost. See Casassus and
Collin-Dufresne (2005) for example.

2If anything, anecdotal evidence points to the opposite direction. Indeed, conversations with S&P
Global Platts reveal that the price of onshore storage varies between 10 and 50 cents per barrel per
month.
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to academics.

We use a novel dataset of the Louisiana O�shore Oil Port (LOOP) sour crude oil stor-

age futures contract (SFC) to shed light on the dynamics of storage costs. This contract,

which started trading in March 2015, gives the holder the right to store 1,000 barrels of

crude oil at the Clovelly Hub, one of the largest private storage facilities in the U.S., dur-

ing the delivery month. The SFC is well-suited for our analysis since it makes the pricing

of storage transparent to all market participants. We document several novel �ndings.

First, the cost of storing oil for 1 month corresponds to 0.50% of the spot price of oil on

average. This proportional storage cost exhibits considerable �uctuations as evidenced

by the (monthly) volatility estimate of 0.89%. These time-variations are economically

meaningful too. For instance, the average proportional storage cost is higher during con-

tango periods (0.74%), when the incentive to store is strong, than during backwardation

periods (0.13%), when there is little incentive to store oil.

Second, we complement our data of SFC with the dataset of the LOOP Gulf Coast

sour crude oil futures contract (GCOFC), which is also physically settled at the Clovelly

Hub. Exploiting the insight that the SFC and the GCOFC are both physically settled

at the same location, we propose a decomposition of the basis into (i) the storage cost

channel (scc) and (ii) the adjusted convenience yield channel (acyc). We �nd that the

two channels are negatively correlated. Furthermore, the decomposition reveals that the

scc dominates the level of the basis and accounts for nearly half of its variations. This

set of results is particularly strong during contango periods and clearly challenges the

standard assumptions in the literature that the storage cost is small (Ederington et al.,
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2021) and/or constant (Gu et al., 2020).

Third, we analyze the information content of the SFC. If the SFC is informative about

the cost of storing oil over the delivery month, it is interesting to analyze its predictive

power for next-month's inventory level. We regress the 1-month inventory growth rate

on a constant and the lagged growth rate of the scc. We �nd a positive and statistically

signi�cant slope estimate (0.020, t-stat=2.802). The adjusted R2 of 7.07% further con�rms

the information content of the SFC. We augment the model with the lagged acyc and

various control variables used in the literature, e.g., Ederington et al. (2021), and obtain

very similar results. Collectively, these results suggest that market participants generally

pay more for the SFC when they plan to have more inventories.

Fourth, we document that the basis predicts the spot returns of the LOOP Gulf Coast

crude oil. Given our decomposition of the basis, we evaluate the relative contribution of

each of the two components to the predictive power of the basis. Our analysis reveals

that the scc predicts the spot return with a positive and statistically signi�cant loading

(3.800, t-stat=3.334). The economic message is simple and intuitive: market participants

pay more for storage when they anticipate higher future spot returns. In contrast, the

slope associated with the acyc is not statistically signi�cant. Taken together, this set of

results suggests that the scc is the main channel through which the predictability of the

basis arises. We are not aware of any study documenting this result.

We conduct several additional analyses. We begin by exploring the sensitivity of our

inventory forecasting regressions to potential information leakage ahead of the publication

of the inventory data. Next, we conduct a bootstrap experiment to account for the fact
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that our sample period is relatively short, making the statistical inference potentially

treacherous. The bootstrap analysis con�rms the robustness of our results. The cost-of-

carry formula requires us to take a stance on the proxy for the interest rate. To this end,

we assess the sensitivity of our �ndings to the interest rate proxy and �nd that it does

not materially a�ect our results. Additionally, we consider alternative de�nitions of oil

market conditions and �nd no discernible e�ect on our main �ndings. Furthermore, we

investigate the contribution of the storage cost channel to the convexity measure of Gu

et al. (2020). We �nd that the cost of storage plays an important role in the convexity

measure. Finally, we document the predictive power of the scc for the spot return of

the WTI crude oil as well as the return on the exchange traded fund (ETF) tracking

companies that are active in the transportation and storage segment of the energy value

chain.

Our work is directly related to the literature on the cost of storage. Using warehouse

data for June 1984, Fama and French (1987) document large cross-sectional di�erences

in the monthly storage cost with estimates varying between 0.01% and 2.67% of the cor-

responding spot price. Ross (1997) estimates that the 1-month cost of storage represents

1.67% of the spot price of oil.3 Routledge et al. (2000) assume that the 1-month storage

cost is equal to 0.25% of the oil spot price. In a parametric setting, Byun (2017) estimates

that, when the price of the WTI crude oil reached $99.21 per barrel, the marginal cost

of storing oil for 1 month was 0.91% of the spot price. Baker (2021) assumes that the

cost of storing oil for 3 months represents about 3% of the spot price of oil. Chincar-

3To be speci�c, the author reports that the cost of storing a barrel of oil for 1 month is $0.25. The
price of oil at the time was around $15.
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ini (2020) documents large variations in the storage costs estimates contained in analyst

reports. The large variations in the estimates of the extant literature might arise from

the fact that the storage cost estimates (i) appear to be selected on an ad-hoc manner in

theoretical papers, (ii) depend on the modelling assumptions, (iii) vary with the type of

storage, e.g., salt cavern, railroads, or onboard tankers at sea, (iv) change with the length

of the lease contract, and (v) are based on proprietary data sources.4 Di�erent from these

studies, we use data from the storage futures market, which make the pricing of storage

transparent for each delivery month. We document a novel set of stylized facts regarding

the cost of storage that can be used to further discipline and evaluate theoretical models.

Our paper also contributes to the commodity literature that assumes that storage costs

are relatively stable. This literature dates back at least to the work of Brennan (1958).

The author surveys the price of cold-storage for some dairy and agricultural commodities

and notes that the storage cost is generally the same from one month to the next.5 Gu

et al. (2020) point out that the cost of storage may vary across commodity markets but not

in the time-series dimension. To the best of our knowledge, we are the �rst to empirically

study the dynamics of the cost of storage. We quantify the contribution of the scc to the

dynamics of the basis. Our estimates suggest that the scc accounts for close to half of the

variations in the basis over our sample period. At a minimum, our results caution against

the usual interpretation that the basis is mostly informative about the convenience yield.

4Using a proprietary dataset from Plains All, the largest storage operator at Cushing, Ederington
et al. (2021) document that the mean di�erence between the annual maximum and minimum storage
costs is $0.175. Unfortunately, this information is di�cult to interpret in a meaningful manner as the
authors do not provide statistics related to the average monthly storage cost.

5Speci�cally, Brennan (1958) obtains the storage cost of (i) eggs, butter, and cheese between 1924
and 1938, and (ii) wheat and oats between 1924 and 1932.
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If anything, the decomposition results suggest that the storage cost component plays an

important role.

Finally, our study contributes to the broader literature on the information content of

the basis. This literature is directly motivated by the theory of storage. Fama and French

(1987) document the predictive power of the futures�spot price spread for the changes in

the spot price of several commodities. Brooks et al. (2013) extend this result to the oil

market.6 We complement this literature by showing that, consistent with the theory of

storage, the basis predicts the spot return of the Gulf Coast sour crude oil. We go a step

further and decompose the basis into the scc and acyc. This decomposition enables us to

investigate the conduit through which the predictive power of the basis for spot returns

arises. Our analysis reveals that the predictive power of the basis stems mostly from the

scc rather than the acyc. To our knowledge, we are the �rst to document this result.

The remainder of this paper proceeds as follows. Section II presents the data and

methodology. Section III discusses our main results. Section IV presents the additional

robustness checks. Finally, Section V concludes.

II Data and Methodology

This section begins with an overview of our dataset. Next, the discussion focuses on

the methodology.

6There is a related literature that analyzes the predictability of commodity futures risk premia with
a particular focus on the cross-section. See Fuertes et al. (2010), Szymanowska et al. (2014), Koijen et al.
(2018), and Boons and Prado (2019).
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A Data

Storage Futures Contracts We analyze the LOOP SFC which started trading in

March 2015. The SFC is a physically-settled futures contract that gives its holder the

legal right to store 1,000 barrels of LOOP Gulf Coast sour crude oil at the Clovelly

Hub during the delivery month.7,8 It has a monthly delivery cycle spanning the next 15

consecutive months. For each delivery month, LOOP can o�er a monthly storage capacity

as high as 7.2 million barrels. Typically, the SFC is traded by commercial players such

as oil re�ners and oil producers as well as non-commercial players, including arbitrageurs

engaging in cash-and-carry arbitrage as described in Ederington et al. (2021).

On the �rst Tuesday of every month, LOOP auctions new storage capacity either as

SFC or physical forward agreement (PFA) on the proprietary Matrix Auction Platform.9

Post-auction, the SFC trades on the Chicago Mercantile Exchange (CME) until the third

business day before the twenty-�fth day of the month prior to the delivery month.10 We

focus on the SFC rather than the PFA for several reasons. To begin with, the secondary

market of the PFA is over-the-counter, making it di�cult to obtain the time-series of

7The LOOP crude oil storage facilities in Clovelly are the largest privately-owned crude oil storage
facilities in the U.S. The LOOP facilities include 8 underground salt caverns that boast a total capacity
of approximately 60 million barrels.

8It is important to stress that the salt cavern is the cheapest, and thus the most preferred, method
of storage. One implication of this is that the associated storage cost is likely to be very responsive to
market conditions. There are more expensive storage methods such as the onshore tanks, the railcars,
as well as the o�shore oil tankers. The Wall Street Journal reports that storing oil in an underground
salt cavern �can cost 25 cents a barrel each month, while storing crude on railcars costs about 50 cents

a barrel and �oating storage can cost 75 cents or more�. We refer the interested reader to the following
article: https://www.wsj.com/articles/the-new-oil-storage-space-railcars-1456655405.

9The Physical Forward Agreement (PFA) is a bilateral contract between LOOP and the holder of the
PFA, which enables the latter to store 1,000 barrels of oil at Clovelly Hub.

10If the twenty-�fth calendar day of the month is not a business day, then trading ends on the third
business day prior to the last business day preceding the twenty-�fth calendar day. For further de-
tails about the SFC, we refer the interested reader to the following page: https://www.cmegroup.com/
trading/energy/crude-oil/loop-crude-oil-storage_contract_specifications.html.
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prices needed for our main analyses. Second, the PFAs awarded in the auction need to be

paid in full on the second business day following the award. This signi�cant cash outlay

means that only deep-pocketed investors tend to trade in this market. One upshot of this

is that the auctions of the SFC are likely more competitive than those of the PFA.11

The LOOP SFC is a major innovation for the market of crude oil storage for at least

three reasons. First, it makes the pricing of storage transparent to all market participants.

Second, the monthly expiration schedule o�ers great �exibility to the end-users who were

traditionally locked into long-term lease contracts. Third, because the SFC enables market

participants to better manage their storage risk, it complements well the existing GCOFC,

which is also physically settled at the Clovelly Hub. Given the preceding discussion, it

is not surprising to see a growing number of storage venues launching similar products.

For instance, in March 2019, the Intercontinental Exchange (ICE) launched its own ICE

Permian WTI crude oil storage futures, which gives its holder the right to store 1,000

barrels of Permian WTI crude oil at Magellan's terminal in East Houston, Texas (MEH).12

More recently, Matrix Global has also started running an auction for storage at the

Oiltanking MOG'S Saldanha Bay facility in South Africa.13

We obtain the daily time-series of the settlement prices of the SFC for the period start-

ing in March 2015 and ending in December 2019. Our dataset comes from Re�nitiv Tick

11Indeed, conversations with market participants con�rm this conjecture. For further details about the
auction mechanism, we refer the reader to the following webpage: https://matrix.global/auctions/
loop/.

12Magellan segregates storage for 500,000 barrels of oil for delivery over the �rst six months, and 1
million barrels of oil for the other maturities. For further details, please see https://www.theice.com/
crude-oil/futures/permian-wti/qa.

13This facility consists of nine 1.121 million-barrel in-ground crude-oil storage tanks. https://matrix.
global/auctions/otms/.
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History and includes the settlement price, the settlement date, as well as the expiration

date of each futures contract.14 We process the dataset as follows. First, we discard the

observations linked to the year 2015 since it corresponds to the �rst few months of trad-

ing of the SFC, when trading interest is likely low.15 Second, we construct our monthly

time-series of storage prices by sampling observations only on the last trading day of each

futures contract.16 In so doing, we essentially construct the monthly time-series of the

cost of storing oil over the next month.

Gulf Coast Sour Crude Oil Futures We supplement our dataset of the SFC with

the time-series of the GCOFC. This physically-settled crude oil futures contract has a

monthly delivery cycle for the next 36 months. The underlying crude oil is a blend

of Mars, Poseidon, and Segregation 17 crude oil streams. As is standard with crude oil

futures contracts, the GCOFC is priced as a spread relative to the well-known West Texas

Intermediate (WTI) crude oil futures.

Our dataset for the GCOFC comes from Re�nitiv Tick History as well. We sample

the observations of the GCOFC exactly on the same day as the SFC. Throughout this

paper, we interpret the prices of the prompt and second nearby futures contracts as the

spot and 1-month futures prices, respectively.

14This database has been used by several studies, including Rösch et al. (2017) and Hollstein et al.
(2020).

15In a robustness check, we repeat our analysis after including the data related to the year 2015.
Taking this step does not materially a�ect our results. We do not tabulate these results for brevity.

16Some studies roll the futures contracts at the end of the second month prior to delivery, e.g., Szy-
manowska et al. (2014), and sample observations at the end of the month. We do not follow this approach
because our aim is to test the theory of storage. To do so, one needs an estimate of the spot price. Since,
by no-arbitrage, a forward contract price must be equal to the spot price at maturity, we sample all
observations on the last trading day of the expiring contract. This sampling scheme is consistent with
the work of Fama and French (1987) who use the price of the maturing contract to proxy for the spot
price.
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It is important to stress that the GCOFC and the SFC are well-suited for our analysis

since they are both physically-settled at the Clovelly Hub. To better understand this,

suppose that a trader currently owns 1,000 barrels of oil that she wishes to carry forward

and deliver in 1-month time to cover her short position in the expiring GCOFC. Since

she must deliver 1,000 barrels of oil at the Clovelly Hub, we assume that the trader needs

to pay for the 1-month storage at that location.17 A convenient way to achieve this goal

is for the trader to purchase the SFC to store oil until the delivery date. This example

clearly shows that, by jointly using information about the GCOFC and the SFC, we can

better analyze the cost-of-carry relationship.

B Methodology

Overview One of our goals is to explore the implications of the storage cost for the

pricing of the crude oil futures contract. Our starting point is the cost-of-carry formula.

This theoretical relationship posits that the futures price of a commodity to be delivered

at a future date is equivalent to (i) purchasing the commodity today and (ii) incurring

the carrying charges necessary to hold the inventory position until the delivery date.18

17We view this assumption as perfectly reasonable. Obviously, there are other methods of storage, e.g.,
onboard tankers, which are generally more expensive. Indeed, industry experts point out that the cost
of storing oil aboard a very large crude carrier is generally 3 to 4 times higher than that of underground
storage. It is important to note that, if one were to use these alternatives, the magnitude of the storage
cost channel would be higher than our results suggest.

18Strictly speaking, this insight applies to the forward contract and not the futures contract. As is
common in the literature, we simply assume that the forward price is the same as the futures price
(Casassus and Collin-Dufresne, 2005).
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We can formally write:

Ft,t+1 = St + Et

(
Storaget,t→t+1 +Xt,t→t+1 − CY t,t→t+1

)︸ ︷︷ ︸
Carrying Costs

(1)

where Ft,t+1 is the price at time t of the futures contract for delivery at t + 1. St is the

spot commodity price at time t. Et(·) denotes the expectation at time t. Storaget,t→t+1 is

the cost, at time t, of storing the commodity over the period starting at t and ending at

t+ 1. Xt,t→t+1 denotes the cost, at time t, of all the other expenses for the period starting

at t and ending at t+ 1. These other expenses include the administrative/handling fees,

the insurance cost, the interest rate expense, and the pumping fees to name but a few.

CY t,t→t+1 represents the convenience yield, at time t, related to the period starting at t

and ending at t+ 1. As discussed in Casassus and Collin-Dufresne (2005), the convenience

yield can be interpreted as a dividend �ow that accrues to the inventory holder. Similar

to Szymanowska et al. (2014), all carrying costs are (i) expressed in U.S. Dollars ($) and

(ii) paid at the delivery date i.e., at time t+ 1.

By recording the price of the expiring SFC on its last trading day, we essentially

observe the price, payable today, of storing oil for the next period. However, in the cost-

of-carry relationship, Storage is paid at the end of the period of storage, rather than the

beginning. Consequently, we need to compound the price of the expiring SFC using the

corresponding interest rate. Thus, we can rewrite Equation (1) as:

Ft,t+1 = St + SFCt,t→t+1(1 + rt,t→t+1)
1/12 + Et (Xt,t→t+1 − CY t,t→t+1)︸ ︷︷ ︸

Carrying Costs

(2)
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where SFCt,t→t+1 is the price, at time t, of the storage futures contract that allows the

holder to store crude oil over the period starting at t and ending at t+ 1. rt,t→t+1 denotes

the annualized interest rate, at time t, for the period starting at t and ending at t + 1.

As is standard in the literature on derivatives, e.g., Avino et al. (2020), we use the term-

structure of the London Interbank O�ered Rate (LIBOR) to proxy for the interest rate.19

We obtain this dataset from Bloomberg.

Re-arranging Equation (2), we compute the basis as in Boons and Prado (2019):

Ft,t+1 − St

St︸ ︷︷ ︸
basist

=
SFCt,t→t+1(1 + rt,t→t+1)

1/12

St︸ ︷︷ ︸
scct

−Et

(
CY t,t→t+1 −Xt,t→t+1

St

)
︸ ︷︷ ︸

acyct

(3)

basist = scct − acyct (4)

where basist stands for the basis at time t. scct and acyct indicate the storage cost and

the adjusted convenience yield channels at time t, respectively.

Implications Equation (3) clearly shows that the basis captures the di�erence between

the scc and the acyc. This expression also makes a number of interesting predictions

regarding the time-series properties of the basis.

First, the average of the basis can be decomposed into the following two components:

E(basis) = E(scc) − E(acyc) (5)

19As a robustness check, we use the term-structure of the Treasury rates as a proxy for the interest
rate. As Section IV.C shows, the results are similar. This �nding is not surprising given (i) our interest in
the short-term futures contract and (ii) the low interest rate regime that prevails over our sample period.
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Assuming that the average of the basis is not equal to 0, we can re-arrange Equation (5)

as follows:

100% =
E(scc)

E(basis)
− E(acyc)

E(basis)
(6)

Equation (6) shows that we can decompose the average of basis into a component

linked to the average (i) scc and (ii) acyc. This insight is important because the literature

is unclear about the impact of the storage costs on the level of the basis. On the one

hand, Ederington et al. (2021) argue that the storage costs are too small. On the other

hand, Gu et al. (2020) leave open the possibility that the storage costs might be important

for the level of the basis. Because these studies do not have data about the pricing of

commodity storage, they cannot provide quantitative estimates of the impact of the cost

of storage on the level of the basis.

Second, Equation (4) sheds light on the impact of the storage cost channel on the

variations in the basis. To see this, notice that:

V ar(basis) = V ar(scc− acyc)

100% =
V ar(scc) − 2 × Cov(scc, acyc)

V ar(basis)︸ ︷︷ ︸
Variance Contributionscc

+
V ar(acyc)

V ar(basis)︸ ︷︷ ︸
Variance Contributionacyc

(7)

Equation (7) decomposes the variance of the basis into 2 components. The �rst component

comprises (i) the variance of the scc and (ii) the covariance of the scc and acyc. The second

component is solely driven by the time-variations in the acyc.
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One may wonder why we assign the covariance term to the contribution of the scc.

To understand our motivation, it is useful to recall that the extant literature argues that

the cost of storage displays very little time-variations (Gu et al., 2020). Under the null

hypothesis of a constant storage cost, the �rst component to the right of the equality

sign of Equation (7) will be equal to zero, leaving all the variations in the basis to the

acyc. If this hypothesis is rejected by the data, then Equation (7) provides a framework

to quantify the contribution of the �uctuations in the cost of storage to the variability of

the basis.

Implementation In order to operationalize the decompositions in Equations (6) and

(7), we need to clarify the computation of the key variables in Equation (4). Using the

time-series of oil spot and futures prices, we compute the basis as:

basist =
Ft,t+1 − St

St

(8)

Next, we use the monthly time-series of (i) the price of the expiring SFC, (ii) the interest

rate, and (iii) the crude oil spot price to compute the scc as:

scct =
SFCt,t→t+1(1 + rt,t→t+1)

1/12

St

(9)

Finally, we estimate the acyc. This estimation is complicated by the fact that the conve-

nience yield and other carrying costs are not directly observable. To by-pass this problem,
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we adopt a residual-based modelling framework.20 That is, we re-arrange Equation (4) to

express the acyc channel as the di�erence between two observable quantities, namely the

scc and the basis:

acyct = scct − basist (10)

The advantage of this approach is that it directly imposes the economic restriction implied

by the identity in Equation (4). One might be tempted to posit a reduced-form model for

the acyc. We refrain from pursuing this approach for several reasons. First, this channel

is not directly observable. This can be problematic because, in order to estimate the

parameters of the model, the econometrician will need to make an assumption regarding

the correct proxy. In turn, this assumption makes the estimation results sensitive to the

quality of the proxy. Second, by estimating a time-series model, one cannot guarantee

that the identity presented in Equation (4) always holds.

III Main Results

This section presents our main results. To begin with, we discuss the time-series

properties of the key variables. Next, we empirically decompose the basis into the scc

and the acyc. Finally, we explore the information content of the basis and investigate the

source(s) of its predictive power.

20The residual-based modelling approach is pervasive in the literature. See Campbell and Shiller
(1988) for an early example of this approach.
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A Overview

Before turning to our main results, it is instructive to inspect the time-series behaviour

of our key variables. Figure 1 reveals important time-variations in the basis with the

shaded bars indicating the periods of contango. We de�ne the contango (backwardation)

periods as periods associated with a positive (negative) basis. During contango periods,

inventory holders prefer to store the commodity and carry the position forward. We can

see that the GCOFC is in contango about half of the time.

The top panel of Figure 2 shows that the scc displays considerable time-series varia-

tions, as evidenced by values that range from 0.02% to close to 4.85% per month.21 In

order to get more insights into these time-variations, we compare the periods of contango

and backwardation. Since contango months correspond to periods when inventory owners

have a stronger incentive to store oil until market conditions improve, we expect the scc

to take higher values during these times. The top panel of Figure 2 presents evidence

consistent with this conjecture.

The bottom panel of Figure 2 depicts the dynamics of the acyc. We can see that the

acyc sometimes take negative values over our sample period. At �rst glance, this result

seems puzzling as one would expect the acyc to be bounded from below by zero. However,

recall that our acyc is the spread between the convenience yield and the other costs of

carrying the inventories forward (see Equation (3)). Clearly, if the convenience yield is

21The reader may notice that the scc takes large values in the �rst quarter of 2016. To understand
this result, it is useful to recall that the scc is positively related to the SFC and negatively related to
the spot price of oil. During the �rst quarter of 2016, the price of oil is particularly low, thus boosting
the scc. Furthermore, owners of the physical asset react to low prices by storing the commodity, thereby
exerting an upward pressure on the price of the SFC, which in turn results in a higher scc.
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equal to zero, these other carrying charges can make the acyc turn negative.

Table 1 summarizes the main statistics for the basis, the scc, and the acyc. Several

results are worth pointing out. On average, the basis is positive as evidenced by its

sample mean of 0.18% per month. It also displays substantial time-variations, �uctuating

between −4.93% and 6.16% over our sample period. The average scc is equal to 0.50% per

month. From an economic standpoint, this result sheds some light on the cost incurred

by traders participating in the physical market.22

We can also see that the scc displays a volatility of 0.89% per month, which is higher

than its mean. This volatility estimate challenges the conventional assumption that the

storage cost is constant in the time-series dimension (Gu et al., 2020). Furthermore, we

can see that the scc displays a skewness of 3.28 and a kurtosis of 14.64, suggesting that

it is subject to extreme positive movements. Because of (i) the small sample size and (ii)

the high values of the higher-order moments, we need to be careful when carrying out our

statistical inference.23

Finally, we note that the acyc is positive on average, suggesting that the convenience

yield generally dominates all the other carrying costs, e.g., insurance and interest ex-

penses.24 Analyzing the variance of this channel, we can see that it is more volatile

22One may quibble that our interpretation of the scc as an estimate of the proportional cost of storage
is not quite accurate since we compound the SFC price using the interest rate (see Equation (3)). This
compounding e�ect makes the scc an upward biased estimate of the proportional storage cost. However,
it is worth pointing out that the compounding e�ect is negligible given (i) our focus on the month-ahead
and (ii) the low interest rate environment that prevails over our sample period.

23To alleviate this concern, we compute the standard errors using the dependent wild bootstrap of
Shao (2010). Section IV.B presents the results of the bootstrap experiment and con�rms that our key
results hold. As an additional robustness check, we winsorize the observations at the 95% level. This
untabulated analysis yields qualitatively similar results.

24Given our focus on the 1-month horizon and the low interest rates that prevail during our sample
period, we anticipate that the contribution of interest rate expenses to both the mean and the variance
of the acyc is likely small.
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(1.38%) than the scc. Also, its higher-order moments are closer, compared with those of

the scc, to those of a normal distribution.

B Decomposing the Basis

Unconditional Analysis We decompose the mean and variance of the basis as per

Equations (6) and (7). Panel A of Table 2 shows that the scc contributes 281.05% to the

mean of the basis while the acyc contributes 181.05%.25 Therefore, the scc accounts for a

sizeable share of the mean of the basis. To the extent that our results can be generalized

to other markets, this �nding gives credence to the hypothesis that cross-sectional sorts of

commodities based on their carry signal, e.g., Fuertes et al. (2010), are potentially driven

by cross-sectional di�erences in storage costs (Gu et al., 2020).26

Turning to the variance decomposition, we can see that the scc contributes close to half

(45.35%) of the variation in the basis. This �nding challenges the assumption that storage

costs display very little variations in the time-series dimension (Gu et al., 2020; Ederington

et al., 2021). Since the contribution of the scc to the variance of the basis depends on the

variance of the scc and the covariance of the scc with the acyc (see Equation (7)), one

may wonder about the relative importance of these two terms. To shed light on this, it is

useful to recall that Table 1 reports the standard deviation estimates of the scc (0.89%)

25Note that these contributions are greater than 100% simply because the average basis (0.18%) is
lower than the averages of (i) the scc (0.50%) and (ii) the acyc (0.32%).

26Fama and French (1987) present some evidence that may be consistent with this e�ect. Table 2 of
their paper reports the estimates of storage costs for a broad range of commodity markets. The storage
cost �gures relate to June 1984 and are expressed as a percentage of the spot price. We download
the commodity futures price and 3-month Treasury rate data for June 1984 from Bloomberg. We then
compute the basis and scc based on Equations (3) and (9), respectively. For each commodity market, we
compute the contribution of the scc to the basis as the ratio of the scc over the basis of the corresponding
period. Our untabulated analysis points to large cross-sectional variations in the contribution of the scc
to the level of the basis with an estimate as high as 222% in the wheat market.
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and the basis (1.87%). Equipped with these statistics, we can calculate the contribution

of the variance of the scc to the total variance of the basis. Straightforward calculations

indicate that the variance of the scc alone accounts for 22.65% of the variance of the basis.

The upshot of this is that the scc and acyc are negatively correlated and their covariance

captures 22.70% of the variance of the basis.

Conditional Analysis It is interesting to analyze the results over di�erent market

conditions. A priori, one would expect the scc (acyc) to become more (less) important

when inventory owners have an incentive to carry their position forward. We thus repeat

our decomposition for di�erent market states. In order to identify these market states,

we rely on the periods of backwardation and contango.

Panel B of Table 2 shows that the scc accounts for a small share of the mean and

variance of the basis during backwardation periods.27 This result is to be expected.

After all, inventory holders have very little incentive to store oil during backwardated

markets. Panel C of the same table shows that the scc becomes more dominant during

contango periods, when the incentive to store is stronger. It shows that the scc is the

main contributor to the (i) mean (62.36%) and (ii) variance (76.34%) of the basis.28

27The negative sign of the contribution of the scc to the mean of basis arises from the fact that the
scc is by de�nition positive, while the mean basis is negative during the backwardation period.

28One may wonder about the relatively high contribution (−37.64%) of the acyc to the mean basis
during the contango periods. A priori this channel should be equal to 0 during contango periods since
the convenience yield is expected to be negligible during these times. While this is true, it is important
to remember that the acyc is the di�erence between the convenience yield and other expenses, including
insurance and handling costs. It is plausible that the other carrying costs are positively correlated with
the storage costs, which increase during periods of high inventories, thus making the acyc take negative
values.
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C The Information Content of scc for Future Inventories

Overview The scc is based on the SFC which is informative about the price of storing

oil during the delivery month. To the extent that this futures contract is informative

about future inventory levels, the scc should predict the future stock levels.

To test this prediction, we download inventory data from the website of the Energy

Information Agency (EIA). The EIA is an authoritative source of inventory data that

has been used in several studies, e.g., Baker (2021) and Mukherjee et al. (2021). Speci�-

cally, we obtain the commercial crude oil stock level (expressed in 1,000 barrels), exclud-

ing the lease stock, pertaining to the Petroleum Administration for Defense Districts 3

(PADD3).29 We focus on the PADD3 region because it covers the Gulf Coast area, which

includes the storage facilities of LOOP. More speci�cally, the inventory dataset includes

the domestic and customs-cleared foreign inventories currently at, or in transit to, re�ner-

ies and bulk terminals, and inventories in pipelines.30 Although the stock levels are as of

the Friday of each week, the inventory report is only published on the following Wednes-

day. This implies that there is a publication delay of 5 days (Armstrong et al., 2021;

Prokopczuk et al., 2021). Throughout this paper, our main timing convention is that the

29The U.S. is divided into 5 PADD regions. For more details on the geographical split of regions
into di�erent PADD areas, we refer the interested reader to the following page: https://www.eia.

gov/todayinenergy/detail.php?id=4890. Mukherjee et al. (2021) show that the PADD3 region is
important in that it accounts for 50.21% of the U.S. inventories as of the end of December 2016. Our
weekly inventory dataset of the PADD3 region is available from the following webpage: https://www.

eia.gov/dnav/pet/hist/LeafHandler.ashx?n=PET&s=WCESTP31&f=W.
30As previously discussed, we take the perspective of an investor who stores oil at the Clovelly Hub.

Thus, we do not consider the inventories onboard tankers. Viewed in this light, the EIA inventory data
is well-suited for our purposes as it does not include information about inventory levels onboard tankers
or at international locations that could easily be shipped to the PADD3 area. See Gorton et al. (2013)
for a similar point about the inventory data of WTI crude oil which belongs to the PADD2 region.
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inventory data is associated with its publication date rather than its measurement date.31

Equipped with this dataset, we compute the inventory growth rate as:32

%∆Invt+1 =
Invt+1 − Invt

Invt
(11)

where %∆Invt+1 is the 1-period growth rate in the inventory data at time t+1. Invt+1 and

Invt denote the most recent inventory data published by times t+ 1 and t, respectively.

Since we are modelling the growth rate in inventories, we also de�ne the growth in the

scc as:

%∆scct =
scct − scct−1

scct−1
(12)

where %∆scct is the growth rate in the storage cost channel observed at time t.

We run a regression of the 1-period inventory growth rate on a constant and the lagged

31As a robustness check, we consider the timing convention of Ederington et al. (2021) who assume
that the inventory data is available directly on the Friday. As Section IV.A shows, this alternative choice
leads to similar results.

32Alternative approaches exist. For instance, Alquist et al. (2014) model the logarithmic growth of
the inventories. Another possibility is to predict the change, rather than the growth rate, of inventories
(Ederington et al., 2021). In robustness checks, we consider both of these approaches and �nd that they
lead to similar results. See Tables A1 and A2 of the Online Appendix.
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%∆scc:33

%∆Invt+1 = α + β × %∆scct + εt+1 (13)

where α and β are the intercept and slope parameters, respectively. If %∆scc contains

information about the future inventory growth rate, we expect a positive and signi�cant

slope parameter estimate. Accordingly, we carry out a 1-sided signi�cance test. Through-

out the paper, we use the 5% signi�cance level. We always report the Newey and West

(1987) standard errors computed with 2 lags in parentheses.

Table 3 summarizes the regression results. The �rst set of results from the left reveals

that %∆scc enters the regression with a positive and statistically signi�cant slope esti-

mate (0.020, t-stat=2.802). The explanatory power of this regression (Adj R2=7.07%) is

sizeable too, con�rming that the %∆scc contains information about the future inventory

growth rate.

This �nding is highly relevant for studies that connect the basis to inventories. Alquist

et al. (2014) document that the principal components extracted from the term-structure

of the slopes of the WTI crude oil futures predict the future inventory growth rate.34

33There is very little evidence in the literature to suggest that crude oil inventory data follow a
seasonal pattern at the monthly sampling frequency. Gorton et al. (2013) regress the monthly normalized
inventory data on 12 monthly dummy variables. The authors �nd that, among all energy commodities
analyzed, the model displays the lowest explanatory power for the WTI crude oil market (see their Table
II). Symeonidis et al. (2012) con�rm these �ndings, writing that there is no indication of seasonality in
either the basis or the inventory data linked to the WTI crude oil. While these papers focus on the
WTI oil market, there is no guarantee that the �ndings apply to our market. We therefore perform a
similar analysis on the time-series of the monthly PADD3 inventory data. We do not �nd any indication
of seasonality.

34There are several di�erences between our work and that of Alquist et al. (2014). To begin with, the
authors focus on the term-structure of WTI crude oil futures. Furthermore, they regress the inventory
growth rate on the levels of the principal components. Our analysis focuses on the Gulf Coast sour crude
oil and involves regressions of growth rates on growth rates.
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However, in their framework, it is not clear which of the scc and the acyc accounts for

most of the documented predictive power. In order to further shed light on this, we

augment our baseline model with the lagged growth rate of the acyc (%∆acyc). Since

the acyc can be interpreted as the bene�t, net of other carrying costs, accruing to the

inventory holder, we anticipate a negative relationship between %∆acyc and the future

inventory growth rate.

In other speci�cations, we include the lagged inventory growth rate and control for

several variables that may also have an impact on the growth rate of inventories.35 We

build on Ederington et al. (2021) and select three additional variables.36 The �rst control

variable is the growth rate of the total imports into PADD3. Intuitively, if there is an

unexpected increase in the quantity of imported oil, we should see a higher inventory

growth rate.37 The second variable relates to the growth rate of the quantity of crude oil

used as input by re�neries.38 If re�neries unexpectedly use more crude oil as input into

their production process, we expect to see a lower growth rate of inventories. The third

35We also consider the logarithmic growth of these variables. The only exception to this is the basis
since it can take negative values. For that variable speci�cally, we retain the simple growth rate. Table
A1 of the Online Appendix presents results that are similar to our baseline estimates.

36Similar to Ederington et al. (2021), we use the control variables observed at time t+ 1. Implicit in
this analysis is the assumption that the econometrician is able to perfectly predict the next-period value
of the control variables. Clearly, this is a strong assumption. In an untabulated regression, we include
the control variables at time t, rather than t + 1, and repeat our main analyses. We �nd that the main
conclusion regarding the information content of the %∆scc is unchanged. These results are available on
request.

37Ideally, we would want to study the imports net of exports. Although this dataset is available for
the whole of the U.S., it is unfortunately not available at the PADD level. Hence, we simply restrict our
attention to the imports, expressed in thousands barrels per day. The dataset is available at the following
address: https://www.eia.gov/dnav/pet/pet_move_wkly_dc_NUS-Z00_mbblpd_w.htm.

38The quantity of crude oil used as re�nery inputs is expressed in thousands barrels per day. For
further information about this dataset, we refer the interested reader to the following page: https:

//www.eia.gov/dnav/pet/pet_pnp_wiup_dcu_r30_w.htm.
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variable relates to the growth rate of the U.S. production of oil.39 Holding everything

else constant, an unexpected increase in the U.S. oil production should result in higher

inventory growth. The third column of Table 3 shows that the slope estimate associated

with %∆scc (0.020) and its signi�cance (t-stat=2.157) are very similar to those of our

benchmark estimation (0.020, t-stat=2.802). Furthermore, we can see that, consistent

with our intuition, the loading on the %∆acyc is negative and statistically signi�cant

(−0.001, t-stat=−3.951).

We also interact the %∆scc with the backwardation and contango dummy variables.

We can see from Table 3 that the information content of the channel linked to the %∆scc

is stronger during periods when the underlying oil market is in contango. While the slope

observed during periods of backwardation is not signi�cant (0.009, t-stat=1.877), we ob-

serve a statistically signi�cant estimate (0.042, t-stat=4.379) during periods of contango.

Similar to our benchmark estimates, controlling for other variables does not change our

main message: the information content of the storage cost is stronger during periods when

the incentive to store oil is high.

D The Information Content of the SFC for future Spot Prices

We analyze the information content of the basis for future spot returns:

Rt+1 = α + β × basist + εt+1 (14)

39The dataset shows the U.S. �eld production of crude oil in thousands of barrels per day. The complete
information can be retrieved from https://www.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=PET&

s=WCRFPUS2&f=W.
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where Rt+1 denotes the simple return on oil at time t+ 1, computed as Rt+1 = St+1−St

St
.40

If the basis is informative about future spot returns, we should observe a statistically

signi�cant slope estimate. Table 4 shows that the loading on the basis is positive and

statistically signi�cant (2.241, t-stat=2.382).41

Since basis can be decomposed into the scc and acyc (see Equation (4)), it is interesting

to investigate the contribution of each of these channels to the predictability results. We

start by separately estimating univariate regressions of spot returns on a constant and

each of these channels:

Rt+1 = α + β × scct + εt+1 (15)

Rt+1 = δ + γ × acyct + εt+1 (16)

Intuitively, we expect the loading on the scc and acyc to be positive and negative,

respectively. The reason is that the basis depends positively on the scc and negatively on

the acyc (see Equation (3)). The univariate regression results of Table 4 reveal that the

scc predicts future spot returns with a positive and statistically signi�cant slope estimate

(4.475, t-stat=3.014). The explanatory power of this regression (Adj R2=13.87%) is very

similar to that of the regression of the spot returns on a constant and the lagged basis (Adj

40One may wonder whether our empirical results are robust to the use of logarithmic returns. Table
A3 of the Online Appendix presents the results based on the log returns. Generally, these results are
consistent with those based on simple returns.

41The reader may wonder whether the basis is informative about the futures risk premium too. Build-
ing on Fama and French (1987), it is straightforward to show that the basis may be informative about
the future spot return and the futures risk premium. The slope parameter of Equation (14) is informative
about the share of variation in the basis associated with the future spot returns. Table 4 reveals that
we cannot reject the null hypothesis that β = 1. We thus conclude that the basis is informative about
future spot returns rather than the futures risk premium. This result extends the �nding of Brooks et al.
(2013), who study the WTI crude oil market, to the Gulf Coast sour crude oil market.
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R2=15.04%). The economic intuition is simple: market participants are likely to pay more

for storage when they expect higher future spot returns. Turning to the predictive power

of the acyc, we �nd that the slope estimate is negative but not statistically signi�cant

(−2.196, t-stat=−1.654).42

Next, we estimate an encompassing regression that includes both the scc and acyc as

forecasting variables:

Rt+1 = α + β × scct + γ × acyct + εt+1 (17)

Table 4 shows that the loading on the scc is positive and highly signi�cant (3.800, t-

stat=3.334). This slope estimate is comparable to that observed in the univariate regres-

sion of the spot return on a constant and the lagged scc (4.475, t-stat=3.014). Turning

to the acyc, we �nd that its slope parameter estimate is insigni�cant (t-stat=−1.292).

Furthermore, the explanatory power of this encompassing regression (Adj R2=15.40%) is

very similar to that of the model that includes the scc as the only forecasting variable

(Adj R2=13.87%). Taken together, the evidence suggests that the scc, rather than the

acyc, is the main conduit through which the predictive power of the basis arises. We are

the �rst to document this result. To the extent that this result extends to other com-

modity markets, it poses a challenge to the conventional wisdom in the literature that

the predictive power of the commodity futures basis is driven by the component linked

to the convenience yield.

42It is worth mentioning that, if one were interested in a 1-sided alternative hypothesis test based on
the hypothesized negative relationship, the critical value would be −1.679. The upshot of this is that the
acyc does not predict future spot returns.
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Although consistent with the insights of the theory of storage, one may criticize the

prior analysis on the ground that it does not control for other potentially important return

forecasting variables. To mitigate this concern, we control for a number of variables used

in Gu et al. (2020).43 Speci�cally, we use the relative basis (relbasis), momentum (mom),

and the basis momentum (basmom) de�ned as:

relbasist =
St − Ft,t+1

Ft,t+1

− Ft,t+1 − Ft,t+2

Ft,t+2

(18)

momt = Πt
i=t−11

(
Si

Fi−1,i

)
− 1 (19)

basmomt = Πt
i=t−11

(
Si

Fi−1,i

)
− Πt

i=t−11

(
Fi,i+1

Fi−1,i+2

)
(20)

where Ft,t+2 is the time-t price of the futures contract expiring at t + 2. The last three

columns of Table 4 show that including these variables does not signi�cantly a�ect the

information content of the scc.

IV What About ...

Having documented our main results, we carry out a number of additional tests. First,

we consider a di�erent timing convention for the inventory data. Second, we conduct a

bootstrap experiment to ensure that our statistical evidence is robust. Third, we evaluate

the impact of the choice of the interest rate proxy on our main results. Fourth, we use

an alternative de�nition of market conditions that is based on the spare capacity level.

43In interpreting our evidence, one should be careful about the fact that most of the literature focuses
on the predictability of the futures risk premium rather than the spot return. As a result, the forecasting
variables in Gu et al. (2020) are not necessarily well-suited for a study of spot return predictability.

27



Fifth, we investigate the extent to which the convexity variable of Gu et al. (2020) may

be useful to purge the slope between the futures and spot prices from the e�ect of the

storage cost. Sixth, we explore whether the scc may be informative about the WTI spot

oil return. Seventh, we examine the predictive power of the scc for the stock returns of

companies active in the mid-stream segment of the energy value chain.

A Timing Convention?

Our analysis of the predictability of the inventory growth rate accounts for the pub-

lication delay inherent to inventory news. However, Rousse and Sévi (2019) study the

dynamics of the WTI futures prices and present evidence which suggests the possibility of

information leakage prior to the o�cial inventory announcement. This result may explain

why Ederington et al. (2021) use a timing convention based on the measurement date,

i.e., the Friday, rather than the release date.

As a robustness check, we assume that the inventory data is known to market partici-

pants on Friday as soon as the measurement is completed and repeat our analysis. Table

A4 of the Online Appendix shows that the results are similar to our benchmark �ndings.

B The Statistical Inference?

Given that the SFC is a relatively new instrument, our sample period is necessarily

short. Furthermore, the summary statistics of Table 1 reveal that the distribution of the

scc is positively skewed and displays excess kurtosis. One may naturally wonder about the

e�ect of the aforementioned facts on our statistical inferences. To address this concern,

28



we implement the dependent wild bootstrap of Shao (2010). This approach preserves the

linear dependence present in the original data and allows for heteroskedasticity.

To �x ideas, suppose that the regression model of interest is that of Equation (13).

We draw a vector of residuals, of the same length as the time-series of our dependent

variable, from a standard normal distribution. We model the dependence in the residuals

through a Bartlett kernel using a bandwidth parameter equal to 2.44 We then multiply

each of the generated random series with the corresponding residual of the regression (see

Equation (13)), thus obtaining the time-series of bootstrapped residuals. Next, we use the

bootstrapped residuals, the estimated parameters, and the forecasting variables to gener-

ate the time-series of the bootstrapped dependent variable. We repeat the previous steps

9,999 times to obtain 9,999 pseudo-samples of the dependent variable of the forecasting

regression. For each pseudo-sample, we then use the bootstrapped series to estimate the

forecasting regression. As a result, we obtain 9,999 estimates of each parameter. For

each parameter, we obtain the bootstrapped standard error by computing the standard

deviation across the 9,999 estimates.

We use the bootstrapped standard error to compute the bootstrapped t-stat which we

report in square brackets (see Tables 3 and 4). Inspecting these quantities, we can see

that they are similar to our baseline Newey and West (1987) t-statistics. This result gives

us more con�dence in our analysis.

44Our interest in this kernel and bandwidth is mainly motivated by the desire to coincide with the
Newey and West (1987) estimator computed using 2 lags.
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C The Proxy of Interest Rates?

When computing the scc (see Equation (9)), we use the term-structure of the LIBOR

rates as a proxy for the riskless rate. While this approach is standard in the literature, it

is nonetheless important to assess the sensitivity of our results to this assumption. As an

alternative, we use data on the term-structure of the U.S. Treasury interest rate, which

we download from Bloomberg.

Tables A5�A8 of the Online Appendix summarize the results. Generally, these results

are very similar to our baseline estimates and con�rm our key �ndings. The scc makes a

substantial contribution to both the mean and variance of the basis. This set of �ndings

is more pronounced during the contango periods. Furthermore, we can see that the scc

is the main conduit through which the predictive power of the basis emerges.

D Di�erent De�nitions of Market States?

So far, we have relied on the sign of the basis to identify the market states. Since the

basis takes positive values when the futures price is higher than the contemporaneous spot

price, one might worry that this will mechanically lead to a higher scc during these times.

To address this concern, we now consider a proxy of market states based on the spare

capacity level at the PADD3 district. The computation of this measure is as follows.

First, we retrieve the time-series of the weekly PADD3 stocks, excluding the strategic

petroleum reserves of crude oil. Second, we deduct from this dataset the quantity of oil in

pipeline �lls or in transit by water and rail. Third, we divide the resulting �gure by the

re�nery, tank, and underground working storage capacity. The �nal estimate gives us a
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measure of the used storage capacity. The spare capacity is simply the di�erence between

1 and the used storage capacity.

Equipped with this dataset, we now identify 2 market states. The �rst market state

relates to periods during which the spare storage capacity is below the median spare

capacity computed using the full sample. We call this the low spare capacity state. The

second market state, which we term the high spare capacity, relates to all other periods.

Intuitively, we expect that the price of storage should be greater when there is very low

spare capacity available. Table A9 of the Online Appendix decomposes the basis for each

of these two regimes. It shows that the scc dominates both the mean (83.16%) and the

variance (64.70%) of the basis during the low spare capacity regime.

We also repeat our analysis of inventory growth predictability after conditioning on

the state of the market. As the last two columns of Table 3 show, our results are similar to

the baseline estimates. The variables linked to the scc strongly predict future inventory

growth rates. Most of this predictive power arises from periods when there is limited

spare capacity in the market.

E The Convexity (Gu et al., 2020)?

In a recent paper, Gu et al. (2020) point out that storage costs may signi�cantly con-

tribute to the level of the basis. In turn, this e�ect implies that cross-sectional sorts on the

basis may be a�ected by cross-sectional di�erences in the storage costs, complicating the

economic interpretation of the �ndings of papers analyzing the carry trade in commodity

markets (Fuertes et al., 2010). The authors assume that the storage cost is constant over
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time and propose to compute the convexity, which is de�ned as the di�erence between

the �rst two bases:

convexityt =
Ft,t+2 − Ft,t+1

Ft,t+1

− Ft,t+1 − St

St

(21)

where convexityt is the convexity measure at time t.

Straightforward computations reveal that:

convexityt =
SFCt,t+1→t+2(1 + rt,t+1→t+2)

1/12

Ft,t+1

− SFCt,t→t+1(1 + rt,t→t+1)
1/12

St︸ ︷︷ ︸
sccconvexity

t

−
(
Et

(
CY t,t+1→t+2 −Xt,t+1→t+2

Ft,t+1

)
− Et

(
CY t,t→t+1 −Xt,t→t+1

St

))
︸ ︷︷ ︸

acycconvexity
t

convexityt = sccconvexityt − acycconvexityt (22)

where SFCt,t+1→t+2 is the price at time t of the storage futures contract that enables

its owner to store the commodity from t + 1 to t + 2. rt,t+1→t+2 is the forward in-

terest rate at time t pertaining to the period that starts at t + 1 and ends at t + 2.

sccconvexityt and acycconvexityt denote the values, at time t, of the storage cost and ad-

justed convenience yield components of convexity, respectively. We compute sccconvexityt =

SFCt,t+1→t+2(1+rt,t+1→t+2)1/12

Ft,t+1
− SFCt,t→t+1(1+rt,t→t+1)1/12

St
. Lastly, we obtain acycconvexityt as the

di�erence between convexityt and scc
convexity
t .

Equation (22) reveals that, if (i) the short-end of the term-structure of the SFC is �at,

(ii) the short-end of the term-structure of interest rates is constant, and (iii) the basis

is equal to zero, i.e., Ft,t+1 = St, then the sccconvexity will be equal to zero. One upshot
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of this is that convexity will e�ectively be free of the in�uence of the storage cost as

predicted by Gu et al. (2020). We can check whether these assumptions are borne out by

the data by combining our dataset of SFC and the insights of Equation (22) to gauge

the contribution of sccconvexity to the dynamics of convexity.

Table 5 decomposes the mean and variance of the convexity. We can see that the

sccconvexity dominates the mean (289.93%) of the convexity and makes a modest contri-

bution (17.69%) to the variance of the convexity. Taken together, the results suggest

that the convexity approach of Gu et al. (2020) does not completely eliminate the e�ect

of the storage costs.

F The Predictability of WTI Spot Oil Returns?

So far, our analysis focuses on the predictability of the spot returns on the Gulf Coast

crude oil. Our interest in this market is directly motivated by the fact that it is well-

aligned with our dataset of SFC and GCOFC. Nonetheless, the WTI is the benchmark

crude oil market and there are pipelines connecting the PADD3 area to the PADD2 area,

which includes Cushing in Oklahoma, the main delivery point of the WTI crude oil. This

insight raises the possibility that the scc may, to some extent, comove positively with the

cost of storing oil in Cushing. That is, the storage cost in the Clovelly Hub may be a

(noisy) proxy for the storage cost in Cushing. Under this assumption, our scc may be

informative about the WTI spot oil returns.

A few caveats are worth discussing. First, the analysis implies that there are no sig-

ni�cant frictions, e.g., transportation costs, hindering the �ow of oil between the PADD3
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and PADD2 regions. Clearly, if this assumption does not hold, then we will struggle to

�nd evidence of predictability. Second, the storage cost at the Clovelly Hub is a noisy

proxy for that of Cushing. This noise potentially introduces measurement errors in the

analysis, leading to an attenuation bias. Put simply, the noise works against us and makes

it di�cult to �nd evidence of predictability.

Table 6 reveals that the scc is a strong predictor of WTI spot returns. In univari-

ate regressions, it is associated with a signi�cantly positive slope parameter (3.920, t-

statistic=2.739). In the encompassing regression that includes the scc, the acyc, and the

same control variables as in our analysis of the predictability of the sour crude oil spot

returns, we �nd that its slope coe�cient is still positive and highly signi�cant (3.023,

t-stat=2.675).45 Remarkably, this analysis reveals that, notwithstanding the attenuation

bias inherent to this analysis, the scc contains information about the benchmark WTI

crude oil spot return.

G The Predictability of the Returns on Mid-Stream Companies?

We push our predictability analysis a step further. Speci�cally, if the SFC is truly

informative about the pricing of storage, we should see that it predicts the stock returns

of companies that specialize in the transportation and storage of crude oil. To shed

45One may object to this analysis on the grounds that our control variables are based on data linked
to the GCOFC. To address this concern, we compute the control variables based on the WTI futures
contract. Table A10 of the Online Appendix presents results that are similar to our baseline �ndings.
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light on this, we focus on the ETFs that track the Alerian MLP infrastructure index.46

This capitalization-weighted index comprises energy �rms, headquartered in the U.S.

and Canada, that generate most of their cash �ows from mid-stream activities such as

transportation and storage.47 We obtain the time-series of prices of the (i) Alerian Energy

Infrastructure (ENFR), (ii) VanEck Vectors (EINC), and (iii) Alerian MLP (AMLP)

ETFs from Bloomberg. All three ETFs track the same Alerian MLP index.48 Table

7 summarizes the results of the regression of the monthly returns on each ETF on a

constant and the lagged scc. We can see that, consistent with our hypothesis, the scc

exhibits strong predictive power for the future returns on each ETF.

V Conclusion

We use a novel dataset of SFC to conduct the �rst detailed analysis of the dynamics

of the cost of oil storage. We �nd that the 1-month storage cost represents on average

0.50% of the spot price of oil and displays considerable time-variation. These �uctuations

challenge the common assumption in the literature that the storage cost varies little over

time. We develop and implement a novel decomposition of the basis into the scc and

46Since our SFC is informative about storage costs in the PADD3 area, we should ideally focus on the
companies that are most active in that region. Alas, we do not have detailed information about where
each company generates most of its pro�ts. If anything, this limitation suggests that the forecasting
power we document in this paper is a conservative estimate of the predictive power of the scc for the
stock returns of related companies.

47This index includes companies such as Plains GP Holdings and Magellan Midstream Partners that
are very active in the transportation and storage of crude oil. Clearly, these companies are leading �rms
in their line of business. For example, Plains GP Holdings is the largest storage operator at Cushing.
Magellan Midstream Partners is associated with the Permian WTI storage futures contract.

48Before turning to the results, we emphasize that it is not a foregone conclusion that the scc predicts
the returns on these ETFs. After all, the Alerian infrastructure index is not speci�c to the PADD3 region.
Indeed, it captures information about (i) crude oil in the PADD3 and other regions and (ii) other energy
segments, e.g., natural gas.
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acyc. Our empirical results reveal that the scc plays a key role in the dynamics of the

basis. Indeed, it captures most of the mean of basis and accounts for around 50% of its

variations.

Consistent with the theory of storage, the basis predicts the spot return of sour crude

oil. Digging deeper, we establish that the scc is the main conduit through which this

predictive power arises. We also document the predictive power of the scc for important

quantities, including inventory growth, the spot return on WTI crude oil, and the return

on ETFs tracking companies active in the mid-stream segment of the energy value chain.

As more data become available, it would be interesting to analyze the extent to which

our predictability results hold out-of-sample. Furthermore, as more storage futures con-

tracts reach the market, it would be insightful to (i) carry out a cross-sectional analysis

of the cost of storage and (ii) explore the impact of the cross-sectional di�erences in the

storage cost on the performance of the carry strategy (Fuertes et al., 2010; Koijen et al.,

2018). Finally, it would be interesting to develop theories that can quantitatively generate

all our main �ndings. We leave all these interesting avenues for future research.
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Figure 1: Time-Series Dynamics of the Basis

This �gure depicts the time-series dynamics of the 1-month basis (basis). The sample period is from

January 2016 until December 2019. The vertical axis shows the level of the basis. The horizontal

axis indicates the observation date. The shaded bars indicate periods of contango, de�ned as periods

associated with a positive basis.
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Figure 2: Time-Series Dynamics of the Storage Cost and Adjusted
Convenience Channels

This �gure depicts the time-series dynamics of the 1-month storage cost channel (scc) and the 1-month

adjusted convenience yield channel (acyc). The sample period is from January 2016 until December

2019. The vertical axis shows the level of the scc (Top Plot) and acyc (Bottom Plot). The horizontal

axis indicates the observation date. The shaded bars indicate periods of contango.
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Table 1: Summary Statistics

This table presents the summary statistics of the basis (basis), the storage cost channel (scc), and the

adjusted convenience yield channel (acyc). The sample period is from January 2016 until December 2019.

Mean is the average. Median indicates the median. Std is the standard deviation. Skew and Kurt are

the skewness and kurtosis, respectively. Min and Max point to the minimum and maximum values of

the series. Finally, AR(1) and Nobs show the �rst order autocorrelation estimate as well as the total

number of observations.

basis scc acyc

Mean 0.18% 0.50% 0.32%
Median 0.20% 0.09% 0.09%
Std 1.87% 0.89% 1.38%
Skew 0.37 3.28 1.07
Kurt 5.40 14.64 5.51
Min −4.93% 0.02% −3.20%
Max 6.16% 4.85% 4.99%
AR(1) 0.56 0.63 0.36
Nobs 48 48 48
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Table 2: Dissecting the Basis

This table summarizes the results of the decomposition of the basis (basis) into components linked to (i)

the storage cost channel (scc) and (ii) the adjusted convenience yield channel (acyc). Mean shows the

contribution of the variable [name in column] to the average of basis. Variance presents the contribution

of the variable [name in column] to the variance of basis. Panel A shows the results based on the entire

sample. Panels B and C show the results based on samples linked to observations taken during the

backwardation and contango periods, respectively.

Panel A: Unconditional

scc acyc

Mean 281.05% 181.05%
Variance 45.35% 54.65%

Panel B: Backwardation

scc acyc

Mean −9.70% −109.70%
Variance −3.45% 103.45%

Panel C: Contango

scc acyc

Mean 62.36% −37.64%
Variance 76.34% 23.66%
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Table 3: Predictability of Inventory Growth

This table summarizes the results of the predictability of the 1-month PADD3 inventory growth rate

observed at time t+1 on a constant and several variables. α denotes the intercept. Icontango,t is a dummy

that takes value 1 if the futures market is in contango at time t. Ibackwardation,t is a dummy that takes value

1 if the futures market is in backwardation at time t. Ispare capacity<q50,t and Ispare capacity>q50,t are dummy

variables taking values 1 if the spare capacity is below and above the median at time t, respectively.

%∆scct and %∆acyct denote the growth rate in the storage cost and the adjusted convenience yield

channels at time t, respectively. %∆importst+1, %∆refineryt+1, and %∆productiont+1 indicate the

growth rate in the imports, re�nery inputs, and production at time t + 1, respectively. %∆Invt is the

lagged inventory growth rate. We report the Newey and West (1987) t-statistic computed with 2 lags

in parentheses. The �gures in square brackets indicate the bootstrapped t-statistic based on the wild

bootstrap of Shao (2010). Adj R2 is the adjusted R-squared of the model. Nobs shows the total number

of observations.

α −0.001 −0.001 −0.002
(−0.166) (−0.145) (−0.404)
[−0.152] [−0.135] [−0.402]

Icontango,t 0.003 0.002
(0.459) (0.239)
[0.423] [0.243]

Ibackwardation,t −0.008 −0.009
(−0.865) (−1.192)
[−0.855] [−1.172]

Ispare capacity<q50,t −0.010 −0.010
(−1.274) (−1.321)
[−1.250] [−1.350]

Ispare capacity>q50,t 0.008 0.008
(0.942) (0.814)
[0.881] [0.850]

%∆scct 0.020 0.021 0.020
(2.802) (2.728) (2.157)
[2.638] [2.546] [2.056]

%∆scct × Icontango,t 0.042 0.042
(4.379) (4.286)
[3.865] [3.838]

%∆scct × Ibackwardation,t 0.009 0.007
(1.877) (1.376)
[1.861] [1.454]

%∆scct × Ispare capacity<q50,t 0.045 0.048
(3.641) (3.541)
[3.486] [3.436]

%∆scct × Ispare capacity>q50,t 0.007 0.006
(1.440) (0.929)
[1.361] [0.951]

%∆acyct −0.001 −0.001 −0.001
(−3.951) (−3.288) (−3.527)
[−4.103] [−3.371] [−3.668]

%∆importst+1 0.015 0.011 −0.011
(0.499) (0.379) (−0.377)
[0.522] [0.407] [−0.390]

%∆refineryt+1 −0.179 −0.204 −0.180
(−1.864) (−2.334) (−2.060)
[−1.960] [−2.400] [−2.137]

%∆productiont+1 0.331 0.283 0.180
(2.751) (2.358) (1.373)
[2.628] [2.211] [1.370]

%∆Invt −0.060 0.042 −0.138 −0.033 −0.016 0.066
(−0.491) (0.290) (−1.001) (−0.215) (−0.143) (0.539)
[−0.463] [0.284] [−0.971] [−0.216] [−0.132] [0.519]

Adj R2 7.07% 5.29% 12.97% 9.11% 17.57% 10.59% 18.69%
Nobs 46 46 45 46 45 46 45
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Table 4: Spot Return Predictability: LOOP Gulf Coast Crude Oil

This table summarizes the results of predictive regressions of the 1-month spot return of the Gulf Coast

sour crude oil on a constant and the lagged variable [name in row]. α denotes the intercept. basis denotes

the basis. scc denotes the storage cost channel. acyc indicates the adjusted convenience yield channel.

We compute this quantity as the di�erence between basis and scc. relbasis is the relative basis signal.

mom and basmom denote the momentum and basis momentum signals, respectively. We report the

Newey and West (1987) t-statistic computed with 2 lags in parentheses. The �gures in square brackets

indicate the bootstrapped t-statistic based on the wild bootstrap of Shao (2010). Adj R2 is the adjusted

R-squared of the model. Nobs shows the total number of observations.

α 0.022 0.005 0.034 0.012 0.016 0.039 0.024
(1.814) (0.365) (1.978) (0.795) (0.923) (2.158) (1.160)
[1.747] [0.355] [2.009] [0.762] [0.934] [2.241] [1.204]

basis 2.241
(2.382)
[2.379]

scc 4.475 3.800 3.034 2.647
(3.014) (3.334) (2.958) (2.805)
[2.858] [2.981] [2.605] [2.767]

acyc −2.196 −1.420 −2.605 −2.335
(−1.654) (−1.292) (−1.585) (−1.445)
[−1.651] [−1.265] [−1.631] [−1.487]

relbasis −0.009 1.710 1.814
(−0.014) (1.102) (1.207)
[−0.013] [1.138] [1.227]

mom −0.079 −0.105 −0.067
(−1.458) (−2.295) (−1.354)
[−1.459] [−2.306] [−1.389]

basmom −0.050 −0.002 −0.013
(−0.152) (−0.006) (−0.038)
[−0.149] [−0.006] [−0.037]

Adj R2 15.04% 13.87% 6.80% 15.40% 12.16% 13.25% 15.33%
Nobs 47 47 47 47 47 47 47
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Table 5: Dissecting Convexity

This table summarizes the full sample results of the decomposition of the convexity (convexity) into

components linked to (i) the storage cost channel (sccconvexity) and (ii) the adjusted convenience yield

channel (acycconvexity). Mean shows the contribution of the variable [name in column] to the average

of convexity. Variance presents the contribution of the variable [name in column] to the variance of

convexity.

scc acyc

Mean 289.93% 189.93%
Variance 17.69% 82.31%

45



Table 6: Spot Return Predictability: WTI Crude Oil

This table summarizes the results of predictive regressions of the 1-month WTI spot return on a constant

and the lagged variable [name in row]. α denotes the intercept. basis denotes the basis. scc denotes the

storage cost channel. acyc indicates the adjusted convenience yield channel. relbasis is the relative basis

signal. mom and basmom denote the momentum and basis momentum signals, respectively. Note that

all explanatory variables are computed using information from the Gulf Coast sour crude oil market. We

report the Newey and West (1987) t-statistic computed with 2 lags in parentheses. The �gures in square

brackets indicate the bootstrapped t-statistic based on the wild bootstrap of Shao (2010). Adj R2 is the

adjusted R-squared of the model. Nobs shows the total number of observations.

α 0.019 0.002 0.024 0.001 0.008 0.029 0.011
(1.597) (0.155) (1.545) (0.096) (0.537) (1.806) (0.649)
[1.580] [0.152] [1.619] [0.093] [0.543] [1.919] [0.665]

basis 1.295
(1.654)
[1.714]

scc 3.920 3.976 3.153 3.023
(2.739) (2.903) (2.679) (2.675)
[2.481] [2.524] [2.351] [2.407]

acyc −0.695 0.117 −1.096 −0.788
(−0.806) (0.186) (−1.019) (−0.790)
[−0.812] [0.176] [−1.055] [−0.814]

relbasis 1.107 1.604 1.722
(1.661) (1.329) (1.406)
[1.613] [1.334] [1.429]

mom −0.059 −0.099 −0.055
(−1.403) (−2.221) (−1.325)
[−1.435] [−2.309] [−1.363]

basmom 0.018 0.043 0.030
(0.058) (0.134) (0.096)
[0.057] [0.134] [0.096]

Adj R2 5.08% 13.43% −1.08% 11.49% 12.46% 6.44% 11.09%
Nobs 47 47 47 47 47 47 47
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Table 7: Spot Return Predictability: Mid-Stream ETFs

This table summarizes the results of predictive regressions of the 1-month return on the ETF [name in

column] on a constant and the lagged variable [name in row]. α denotes the intercept. scc is the storage

cost channel. We report the Newey and West (1987) t-statistic computed with 2 lags in parentheses.

The �gures in square brackets indicate the bootstrapped t-statistic based on the wild bootstrap of Shao

(2010). R2 indicates the R-squared of the regression. Adj R2 is the adjusted R-squared of the model.

Nobs shows the total number of observations.

ENFR EINC AMLP

α 0.001 −0.003 −0.003
(0.130) (−0.424) (−0.425)
[0.122] [−0.367] [−0.378]

scc 2.365 2.628 2.405
(2.511) (3.468) (2.592)
[2.376] [3.086] [2.617]

Adj R2 13.78% 16.43% 9.20%
Nobs 47 47 47
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Table A1: Logarithmic Growth of Inventory

This table reports the results of the predictability of the (log) growth rate of the 1-month PADD3

inventory observed at time t+1 on a constant and several variables. α denotes the intercept. Icontango,t is

a dummy that takes value 1 if the futures market is in contango at time t. Ibackwardation,t is a dummy that

takes value 1 if the futures market is in backwardation at time t. Ispare capacity<q50,t and Ispare capacity>q50,t

are dummy variables taking values 1 if the spare capacity is below and above the median at time t,

respectively. %∆scct and %∆acyct denote the log growth rate in the storage cost channel and the

simple growth of the adjusted convenience yield at t, respectively. %∆importst+1, %∆refineryt+1, and

%∆productiont+1 indicate the (log) growth rate in the imports, the re�nery inputs, and the production

at time t+ 1, respectively. %∆Invt is the lagged (log) inventory growth rate. We report the Newey and

West (1987) t-statistic computed with 2 lags in parentheses. The �gures in square brackets indicate the

bootstrapped t-statistic based on the wild bootstrap of Shao (2010). Adj R2 is the adjusted R-squared

of the model. Nobs shows the total number of observations.

α 0.001 0.002 0.000
(0.263) (0.271) (−0.013)
[0.240] [0.252] [−0.013]

Icontango,t 0.008 0.006
(1.136) (0.831)
[1.042] [0.849]

Ibackwardation,t −0.008 −0.009
(−0.854) (−1.283)
[−0.844] [−1.237]

Ispare capacity<q50,t −0.005 −0.005
(−0.616) (−0.607)
[−0.616] [−0.630]

Ispare capacity>q50,t 0.008 0.006
(1.021) (0.705)
[0.949] [0.714]

%∆scct−1 0.030 0.031 0.032
(4.462) (4.287) (4.059)
[4.089] [3.968] [3.820]

%∆scct−1 × Icontango,t 0.038 0.037
(4.228) (4.312)
[4.066] [4.099]

%∆scct−1 × Ibackwardation,t 0.017 0.021
(1.481) (1.753)
[1.509] [1.759]

%∆scct−1 × Ispare capacity<q50,t 0.037 0.038
(3.139) (3.056)
[2.984] [2.990]

%∆scct−1 × Ispare capacity>q50,t 0.020 0.021
(2.061) (1.961)
[1.996] [1.881]

%∆acyct −0.001 −0.001 −0.001
(−5.376) (−4.531) (−4.392)
[−5.429] [−4.631] [−4.529]

%∆importst+1 0.009 0.008 −0.001
(0.325) (0.262) (−0.032)
[0.340] [0.284] [−0.033]

%∆refineryt+1 −0.176 −0.172 −0.174
(−2.191) (−2.124) (−2.208)
[−2.251] [−2.159] [−2.249]

%∆productiont+1 0.359 0.321 0.269
(3.135) (2.806) (2.011)
[2.971] [2.637] [1.985]

%∆Invt −0.089 0.023 −0.145 −0.036 −0.050 0.040
(−0.752) (0.167) (−1.112) (−0.241) (−0.472) (0.316)
[−0.722] [0.164] [−1.074] [−0.240] [−0.442] [0.308]

Adj R2 0.129 0.117 0.225 0.118 0.219 0.109 0.208
Nobs 46 46 46 46 46 46 46
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Table A2: Forecasting the Inventory Changes

This table summarizes the results of the predictability of the 1-month PADD3 inventory change observed

at time t + 1 on a constant and several variables. α denotes the intercept. Icontango,t is a dummy that

takes value 1 if the futures market is in contango at time t. Ibackwardation,t is a dummy that takes value 1

if the futures market is in backwardation at time t. Ispare capacity<q50,t and Ispare capacity>q50,t are dummy

variables taking values 1 if the spare capacity is below and above the median at time t, respectively. ∆scct

and ∆acyct denote the change in the storage cost channel and the change in the adjusted convenience

yield channel at t, respectively. ∆importst+1, ∆refineryt+1, and ∆productiont+1 indicate the change

in the imports, the re�nery inputs, and the production at time t+ 1, respectively. %∆Invt is the lagged

change in the inventory level. We report the Newey and West (1987) t-statistic computed with 2 lags

in parentheses. The �gures in square brackets indicate the bootstrapped t-statistic based on the wild

bootstrap of Shao (2010). Adj R2 is the adjusted R-squared of the model. Nobs shows the total number

of observations.

α −0.002 −0.002 −0.003
(−0.291) (−0.265) (−0.538)
[−0.265] [−0.246] [−0.534]

Icontango,t 0.002 0.000
(0.284) (0.066)
[0.257] [0.067]

Ibackwardation,t −0.009 −0.009
(−0.887) (−1.240)
[−0.877] [−1.219]

Ispare capacity<q50,t −0.012 −0.012
(−1.641) (−1.752)
[−1.627] [−1.804]

Ispare capacity>q50,t 0.008 0.008
(0.914) (0.831)
[0.858] [0.869]

∆scct−1 0.020 0.020 0.019
(2.578) (2.525) (1.979)
[2.484] [2.412] [1.923]

∆scct−1 × Icontango,t 0.041 0.042
(5.967) (6.351)
[5.367] [5.630]

∆scct−1 × Ibackwardation,t 0.008 0.007
(2.745) (1.540)
[2.609] [1.615]

∆scct−1 × Ispare capacity<q50,t 0.043 0.047
(5.180) (5.139)
[4.983] [5.015]

∆scct−1 × Ispare capacity>q50,t 0.007 0.005
(1.751) (0.984)
[1.644] [1.003]

∆acyct −0.001 −0.001 −0.001
(−4.160) (−3.865) (−3.905)
[−4.317] [−3.947] [−4.079]

∆importst+1 0.011 0.004 −0.016
(0.365) (0.155) (−0.561)
[0.380] [0.165] [−0.578]

∆refineryt+1 −0.173 −0.202 −0.181
(−1.792) (−2.357) (−2.090)
[−1.883] [−2.414] [−2.146]

∆productiont+1 0.333 0.282 0.179
(2.758) (2.359) (1.403)
[2.646] [2.230] [1.404]

%∆Invt −0.059 0.043 −0.139 −0.036 −0.026 0.057
(−0.505) (0.304) (−1.061) (−0.241) (−0.255) (0.490)
[−0.470] [0.295] [−1.023] [−0.241] [−0.232] [0.468]

Adj R2 0.090 0.072 0.150 0.128 0.222 0.143 0.241
Nobs 46 46 46 46 46 46 46

2



Table A3: Spot (Log) Return Predictability: LOOP Gulf Coast Crude Oil

This table summarizes the results of predictive regressions of the 1-month spot logarithmic return of the

Gulf Coast sour crude oil on a constant and the lagged variable [name in row]. α denotes the intercept.

basis is the basis. scc denotes the storage cost channel. acyc indicates the adjusted convenience yield

channel. We compute this quantity as the di�erence between basis and scc. relbasis is the relative basis

signal, computed as in Gu et al. (2020). mom is the momentum signal. Speci�cally, this is the return of

the �rst nearby futures contract of the LOOP Gulf Coast crude oil over the most recent 12-month period.

basmom is the di�erence between the momentum signals computed using the �rst and second nearbys

of the LOOP Gulf Coast crude oil market. We report the Newey and West (1987) t-statistic computed

with 2 lags in parentheses. The �gures in square brackets indicate the bootstrapped t-statistic based on

the wild bootstrap of Shao (2010). Adj R2 is the adjusted R-squared of the model. Nobs shows the total

number of observations.

α 0.018 0.001 0.028 0.008 0.011 0.033 0.018
(1.474) (0.110) (1.731) (0.501) (0.678) (1.918) (0.922)
[1.415] [0.107] [1.751] [0.481] [0.684] [1.980] [0.952]

basis 1.999
(2.435)
[2.433]

scc 4.118 3.558 2.839 2.514
(3.157) (3.401) (2.987) (2.773)
[2.988] [3.046] [2.653] [2.734]

acyc −1.905 −1.178 −2.216 −1.960
(−1.638) (−1.213) (−1.515) (−1.371)
[−1.631] [−1.183] [−1.562] [−1.412]

relbasis 0.025 1.457 1.555
(0.040) (1.037) (1.148)
[0.037] [1.064] [1.157]

mom −0.071 −0.097 −0.060
(−1.421) (−2.235) (−1.308)
[−1.419] [−2.235] [−1.332]

basmom −0.032 0.010 −0.001
(−0.094) (0.027) (−0.002)
[−0.091] [0.026] [−0.002]

Adj R2 12.54% 12.43% 5.07% 13.02% 9.98% 9.94% 11.81%
Nobs 47 47 47 47 47 47 47
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Table A4: Inventory Growth Predictability Assuming Release on Friday

This table summarizes the results of the predictability of the 1-month PADD3 inventory growth rate

observed at time t+ 1 on a constant and several variables. We assume that the inventory data is known

to market participants on the measurement date, i.e. on Friday, rather than on the publication date, i.e.

the following Wednesday. α denotes the intercept. Icontango,t is a dummy that takes value 1 if the futures

market is in contango at time t. Ibackwardation,t is a dummy that takes value 1 if the futures market is in

backwardation at time t. Ispare capacity<q50,t and Ispare capacity>q50,t are dummy variables taking values 1

if the spare capacity is below and above the median at time t, respectively. %∆scct and %∆acyct denote

the growth rate in the storage cost channel and the adjusted convenience yield channel at t, respectively.

%∆importst+1, %∆refineryt+1, and %∆productiont+1 indicate the growth rate in the imports, the

re�nery inputs and the production at time t + 1, respectively. %∆Invt is the lagged inventory growth

rate. We report the Newey and West (1987) t-statistic computed with 2 lags in parentheses. The �gures

in square brackets indicate the bootstrapped t-statistic based on the wild bootstrap of Shao (2010). Adj

R2 is the adjusted R-squared of the model. Nobs shows the total number of observations.

α −0.001 −0.001 −0.006
(−0.179) (−0.166) (−1.030)
[−0.167] [−0.157] [−1.001]

Icontango,t 0.003 −0.002
(0.390) (−0.288)
[0.362] [−0.284]

Ibackwardation,t −0.008 −0.012
(−0.735) (−1.449)
[−0.741] [−1.442]

Ispare capacity<q50,t −0.011 −0.012
(−1.570) (−1.772)
[−1.465] [−1.678]

Ispare capacity>q50,t 0.009 0.003
(0.987) (0.318)
[0.962] [0.329]

%∆scct 0.018 0.018 0.021
(1.979) (1.986) (2.066)
[1.917] [1.888] [2.007]

%∆scct × Icontango,t 0.044 0.043
(3.858) (3.613)
[3.434] [3.431]

%∆scct × Ibackwardation,t 0.004 0.007
(0.550) (1.226)
[0.567] [1.289]

%∆scct × Ispare capacity<q50,t 0.049 0.050
(3.380) (3.123)
[3.248] [3.095]

%∆scct × Ispare capacity>q50,t 0.001 0.003
(0.174) (0.630)
[0.173] [0.635]

%∆acyct 0.000 0.000 −0.001
(−1.956) (−1.639) (−2.077)
[−1.989] [−1.695] [−2.120]

%∆importst+1 −0.033 −0.022 −0.038
(−0.909) (−0.554) (−1.232)
[−0.914] [−0.581] [−1.220]

%∆refineryt+1 −0.112 −0.139 −0.119
(−1.285) (−1.663) (−1.499)
[−1.256] [−1.664] [−1.458]

%∆productiont+1 0.720 0.685 0.553
(3.980) (4.403) (2.620)
[3.574] [3.765] [2.355]

%∆Invt −0.046 0.063 −0.120 −0.006 0.006 0.105
(−0.388) (0.439) (−0.893) (−0.039) (0.052) (0.786)
[−0.361] [0.417] [−0.876] [−0.039] [0.048] [0.750]

Adj R2 0.046 0.026 0.132 0.088 0.187 0.121 0.215
Nobs 46 46 46 46 46 46 46
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Table A5: Summary Statistics (Treasury Rate)

This table presents the summary statistics of the basis (basis), the storage cost channel (scc), and the

adjusted convenience yield channel (acyc). The scc is estimated using the Treasury rates (instead of

Libor rates). The sample period is from January 2016 until December 2019. Mean is the average.

Median indicates the median. Std is the standard deviation of the time-series. Skew and Kurt relate

to the skewness and kurtosis, respectively. Min and Max are the minimum and maximum values of

the relevant series. Finally, AR(1) and Nobs show the �rst order autocorrelation estimate and the total

number of observations, respectively. We compute the statistics separately for the time-series of each

variable [name in column]. Panel A uses information from the full sample. Panel B is based on the

periods of backwardation, de�ned as periods where the basis is negative. Finally, Panel C uses data from

the contango period only.

Panel A: Unconditional

basis scc acyc

Mean 0.18% 0.50% 0.32%
Median 0.20% 0.09% 0.09%
Std 1.87% 0.89% 1.38%
Skew 0.37 3.28 1.07
Kurt 5.40 14.64 5.51
Min −4.93% 0.02% −3.20%
Max 6.16% 4.85% 4.99%
AR(1) 0.56 0.63 0.36
Nobs 48 48 48

Panel B: Backwardation

basis scc acyc

Mean −1.36% 0.13% 1.49%
Median −0.99% 0.06% 1.03%
Std 1.33% 0.24% 1.35%
Skew −1.32 3.46 1.16
Kurt 4.05 13.97 3.58
Min −4.93% 0.03% 0.19%
Max −0.06% 1.06% 4.99%
AR(1) 0.39 0.29 0.36
Nobs 19 19 19

Panel C: Contango

basis scc acyc

Mean 1.19% 0.74% −0.45%
Median 0.78% 0.42% −0.33%
Std 1.44% 1.07% 0.70%
Skew 2.16 2.54 −2.09
Kurt 7.19 9.31 9.34
Min 0.00% 0.02% −3.20%
Max 6.16% 4.85% 0.53%
AR(1) 0.51 0.58 0.04
Nobs 29 29 29
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Table A6: Dissecting the Basis (Treasury Rate)

This table summarizes the results of the decomposition of the basis (basis) into components linked to

(i) the storage cost channel (scc) and (ii) the adjusted convenience yield channel (acyc). The scc is

estimated using the Treasury rates (instead of Libor rates). Mean shows the contribution of the variable

[name in column] to the average of basis. Variance presents the contribution of the variable [name in

column] to the variance of basis. Panel A shows the results when the decomposition is carried out using

all sample information. Panels B and C show the results based on the sample of observations linked to

backwardation and contango periods, respectively.

Panel A: Unconditional

scc acyc

Mean 281.00% 181.00%
Variance 45.35% 54.65%

Panel B: Backwardation

scc acyc

Mean −9.70% −109.70%
Variance −3.45% 103.45%

Panel C: Contango

scc acyc

Mean 62.35% −37.65%
Variance 76.33% 23.67%
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Table A7: Inventory Growth Predictability (Treasury Rate)

This table summarizes the results of the predictability of the 1-month PADD3 inventory growth rate

observed at time t+ 1 on a constant and several variables. α is the intercept. Icontango,t is a dummy that

takes value 1 if the futures market is in contango at time t. Ibackwardation,t is a dummy that takes value 1

if the futures market is in backwardation at time t. Ispare capacity<q50,t and Ispare capacity>q50,t are dummy

variables taking values 1 if the spare capacity is below and above the median at time t, respectively. The

scc is estimated using the Treasury rates (instead of Libor rates). %∆scct and %∆acyct denote the growth

rate in the storage cost and the adjusted convenience yield channels at t, respectively. %∆importst+1,

%∆refineryt+1, and %∆productiont+1 indicate the growth rate in the imports, the re�nery inputs, and

the production at time t + 1, respectively. %∆Invt is the lagged inventory growth rate. We report the

Newey and West (1987) t-statistic computed with 2 lags in parentheses. The �gures in square brackets

indicate the bootstrapped t-statistic based on the wild bootstrap of Shao (2010). Adj R2 is the adjusted

R-squared of the model. Nobs shows the total number of observations.

α −0.001 −0.001 −0.002
(−0.166) (−0.145) (−0.405)
[−0.152] [−0.135] [−0.403]

Icontango,t 0.003 0.002
(0.459) (0.238)
[0.423] [0.243]

Ibackwardation,t −0.008 −0.009
(−0.865) (−1.192)
[−0.855] [−1.172]

Ispare capacity<q50,t −0.010 −0.010
(−1.274) (−1.321)
[−1.250] [−1.350]

Ispare capacity>q50,t 0.008 0.008
(0.941) (0.814)
[0.881] [0.850]

%∆scct 0.020 0.021 0.020
(2.802) (2.728) (2.157)
[2.638] [2.546] [2.056]

%∆scct × Icontango,t 0.042 0.042
(4.380) (4.287)
[3.865] [3.839]

%∆scct × Ibackwardation,t 0.009 0.007
(1.878) (1.376)
[1.862] [1.454]

%∆scct × Ispare capacity<q50,t 0.045 0.048
(3.642) (3.541)
[3.487] [3.436]

%∆scct × Ispare capacity>q50,t 0.007 0.006
(1.441) (0.930)
[1.362] [0.951]

%∆acyct −0.001 −0.001 −0.001
(−3.936) (−3.275) (−3.516)
[−4.085] [−3.357] [−3.655]

%∆importst+1 0.015 0.011 −0.011
(0.499) (0.379) (−0.378)
[0.522] [0.407] [−0.391]

%∆refineryt+1 −0.179 −0.204 −0.180
(−1.864) (−2.334) (−2.060)
[−1.960] [−2.400] [−2.136]

%∆productiont+1 0.331 0.283 0.179
(2.750) (2.357) (1.372)
[2.627] [2.210] [1.369]

%∆Invt −0.060 0.042 −0.138 −0.033 −0.016 0.066
(−0.491) (0.289) (−1.001) (−0.215) (−0.143) (0.538)
[−0.463] [0.283] [−0.971] [−0.216] [−0.132] [0.518]

Adj R2 0.071 0.053 0.130 0.091 0.176 0.106 0.187
Nobs 46 46 46 46 46 46 46
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Table A8: Spot Return Predictability: LOOP Gulf Coast Crude Oil
(Treasury Rate)

This table summarizes the results of regressions of the 1-month Gulf Coast crude oil spot return on a

constant and the lagged variable [name in row]. α denotes the intercept. basis denotes the basis. scc

denotes the storage cost channel. The scc is estimated using the Treasury rates (instead of Libor rates).

acyc indicates the adjusted convenience yield channel. We compute this quantity as the di�erence between

basis and scc. acyc indicates the adjusted convenience yield channel. We compute this quantity as the

di�erence between basis and scc. relbasis is the relative basis signal. mom and basmom denote the

momentum and basis momentum signals, respectively. basis,relbasis, mom, and basmom are computed

using information from the Gulf Coast sour crude oil market. We report the Newey and West (1987)

t-statistic computed with 2 lags in parentheses. The �gures in square brackets indicate the bootstrapped

t-statistic based on the wild bootstrap of Shao (2010). Adj R2 is the adjusted R-squared of the model.

Nobs shows the total number of observations.

α 0.022 0.005 0.034 0.012 0.016 0.039 0.024
(1.814) (0.365) (1.978) (0.795) (0.923) (2.158) (1.160)
[1.747] [0.355] [2.009] [0.762] [0.934] [2.241] [1.204]

basis 2.241
(2.382)
[2.379]

scc 4.476 3.800 3.035 2.647
(3.015) (3.334) (2.958) (2.804)
[2.858] [2.981] [2.605] [2.767]

acyc −2.197 −1.420 −2.605 −2.335
(−1.654) (−1.292) (−1.585) (−1.445)
[−1.652] [−1.265] [−1.631] [−1.487]

relbasis −0.009 1.710 1.814
(−0.014) (1.102) (1.207)
[−0.013] [1.138] [1.227]

mom −0.079 −0.105 −0.067
(−1.458) (−2.295) (−1.354)
[−1.459] [−2.306] [−1.389]

basmom −0.050 −0.002 −0.013
(−0.152) (−0.006) (−0.038)
[−0.149] [−0.006] [−0.037]

Adj R2 15.04% 13.87% 6.80% 15.40% 12.16% 13.25% 15.33%
Nobs 47 47 47 47 47 47 47
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Table A9: Decomposition of the Basis: Low and High Spare Capacity

This table summarizes the results of the decomposition of the basis (basis) into components linked to (i)

the storage cost channel (scc) and (ii) the adjusted convenience yield channel (acyc). Mean shows the

contribution of the variable [name in column] to the average of basis. Variance presents the contribution

of the variable [name in column] to the variance of basis. Panel A shows the results based on periods of

low spare capacity. Panel B presents the results based on the sample linked to observations taken during

times of high spare capacity.

Panel A. Low Spare Capacity

Storage Channel Adjusted Convenience Channel

Mean 83.16% −16.84%
Variance 64.70% 35.30%

Panel B. High Spare Capacity

Storage Channel Adjusted Convenience Channel

Mean −9.16% −109.16%
Variance 0.08% 99.92%
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Table A10: Spot Return Predictability: WTI Crude Oil with Market
Speci�c Controls

This table summarizes the results of the regression of the 1-month WTI spot return on a constant and the

lagged variable [name in row]. α denotes the intercept. basis denotes the basis. scc denotes the storage

cost channel. acyc indicates the adjusted convenience yield channel. We compute this quantity as the

di�erence between basis and scc. acyc indicates the adjusted convenience yield channel. We compute

this quantity as the di�erence between basis and scc. relbasis is the relative basis signal. mom and

basmom denote the momentum and basis momentum signals, respectively. Note that relbasis, mom,

and basmom are computed using information from the WTI crude oil market. We report the Newey and

West (1987) t-statistic computed with 2 lags in parentheses. The �gures in square brackets indicate the

bootstrapped t-statistic based on the wild bootstrap of Shao (2010). Adj R2 is the adjusted R-squared

of the model. Nobs shows the total number of observations.

α 0.000 0.002 0.024 0.001 0.007 0.013 0.005
(−0.020) (0.155) (1.545) (0.096) (0.423) (0.701) (0.294)
[−0.020] [0.152] [1.619] [0.093] [0.417] [0.690] [0.289]

basis 2.592
(4.155)
[4.219]

scc 3.920 3.976 2.421 2.480
(2.739) (2.903) (1.786) (1.835)
[2.481] [2.524] [1.531] [1.561]

acyc −0.695 0.117 0.150 0.306
(−0.806) (0.186) (0.214) (0.468)
[−0.812] [0.176] [0.226] [0.489]

relbasis −0.690 −2.338 −0.943
(−0.342) (−1.197) (−0.469)
[−0.314] [−1.163] [−0.433]

mom −0.086 −0.106 −0.085
(−1.707) (−1.884) (−1.662)
[−1.737] [−1.909] [−1.695]

basmom 0.138 0.094 0.137
(0.248) (0.161) (0.245)
[0.266] [0.171] [0.263]

Adj R2 21.53% 13.43% −1.08% 11.49% 13.19% 9.29% 11.27%
Nobs 47 47 47 47 47 47 47
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