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The application of machine learning (ML) methods has become widespread in many disciplines. However,

several methodological pitfalls in ML-based research have also become known in recent years. An issue

that warrants our special attention is the phenomenon of shortcut learning. Shortcuts are decision rules

that perform well on standard benchmark datasets but fail to generalize to more challenging situations.

Consequently, ML models that rely heavily on shortcuts could fail when making inferences using data only

slightly different from their original data. The phenomenon of shortcut learning represents a challenge to

the reproducibility of ML-based studies and the generalizability of research results to real-world contexts.

In this work, we examine a case of shortcut learning in energy consumption prediction theoretically and

empirically. Using simulated and real data, we demonstrate that shortcut learning can lead to overestimation

of performance metrics and model bias. We present a set of suggestions to identify and prevent shortcuts.

1. Introduction

Driven by recent algorithmic advances and the increasing availability of big data, the use of machine

learning methods for predictive modeling is becoming more and more widespread across many

scientific disciplines, such as information systems, management, marketing, finance, economics, and

operations research (Shmueli & Koppius, 2011; Müller et al. 2017, Padmanabhan et al. 2022).
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Yet, several researchers have started to voice concerns about biases, overoptimism, and repro-

ducibility of ML-based research (e.g., Lin et al., 2013; Yang et al., 2018; Kapoor & Narayanan,

2022). For example, an open science initiative led by researchers from Princeton University found

20 reviews across 17 scientific fields that found errors in 329 papers that use ML-based science

(Kapoor & Narayanan, 2022). The underlying reasons for these alarming observations are man-

ifold (incl. a combination of lack of training, media hype about AI, and publication pressure),

but one concrete source for pitfalls are the subtle differences between classical explanatory mod-

eling (incl. statistical null hypothesis testing) and ML-based predictive modeling (esp. supervised

ML) (Shmueli & Koppius, 2011). These differences make the performance evaluation of ML mod-

els tricky (Kapoor & Narayanan, 2022). An issue that warrants our special attention here is the

recently discovered phenomenon of shortcut learning. In the context of ML, shortcuts are learned

decision rules that perform well on standard benchmark datasets in the lab, but fail to generalize

to more challenging real-world situations (Geirhos et al., 2020). ML models that rely heavily on

shortcuts fail when making inferences using data only slightly different from their original training

data, thereby posing a threat to the external validity of an ML-based study.

The issue of shortcut learning has been first observed in deep neural networks processing image or

text data (Geirhos et al., 2020). For example, in a now-famous study, medical researchers reported

that an ML classifier for detecting pneumonia from X-ray scans worked accurately in the hospital

it was developed but poorly for scans from novel hospitals (Zech et al. 2018). The explanation was

that the model had learned to identify particular X-ray systems by detecting a hospital-specific

metal token on the scans. By combining the token with the hospital’s uncommon pneumonia

prevalence rate, the ML model achieved good prediction accuracy without learning anything about

pneumonia at all. In other words, the ML model learned to take shortcuts.
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Since its discovery, various methods for understanding, detecting, and avoiding shortcut learning

have been proposed by the ML community (e.g., repositioning objects and using images with

different backgrounds). However, they all focus on computer vision and natural language processing

applications of deep neural networks.

In this paper, we (1) empirically show that shortcut learning is also a severe problem for ML on

tabular numerical and categorical data, especially panel data, which is prevalent in business and

economics research, and (2) propose and evaluate methods for detecting and mitigating the risk of

shortcut learning.

Using simulated data and a well-known real-world dataset from energy informatics, we show

that shortcut learning can lead to dramatic overestimation of the generalization capabilities of ML

models and demonstrate ways to mitigate this risk.

Predicting energy consumption is a crucial and timely problem with significant implications.

Accurate energy consumption prediction plays a pivotal role in ensuring optimal resource planning,

modeling energy markets, and sustainable development. By forecasting energy demand patterns,

policymakers, utility companies, and industries can make informed (investment) decisions, imple-

ment efficient energy distribution strategies, and proactively address energy challenges, ultimately

contributing to reduced environmental impact and enhanced energy security for a sustainable

future.

As the use of ML as a research method in business and economics is likely to increase in the

future, we believe that raising awareness about shortcut learning as a potential threat to the

external validity and reproducibility of ML-based studies and proposing guidelines and methods to

mitigate this issue as good as possible can further help researchers understand the potential risks

of using ML in their research and thus improve the validity and robustness of their findings.
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The remainder of this paper is structured as follows: Section 2 presents some theoretical back-

ground on shortcut learning. Section 3 studies the prevalence of shortcut learning based on a

simulation study and energy consumption data. Section 4 discusses the detection and mitigation

of shortcuts and Section 5 concludes.

2. Theoretical Background

2.1. Defining Shortcut Learning

In order to better understand under which circumstances ML models rely on shortcuts, it is crucial

to first understand the notion of generalization. In the context of ML, generalization can be defined

as a system’s aptitude to deal with scenarios that it has not previously encountered (Chollet 2019).

There exist various degrees of generalization, ranging from local to extreme generalization (Chollet

2019). The form of generalization that most researchers and practitioners are primarily concerned

with is known as local generalization, or robustness, referring to a system’s ability, given that it

has been trained on a sufficiently large dataset, to handle new samples that emerge from the same

data-generating process – i.e., the new samples come from the same probability distribution as

the training samples. Broad generalization, also referred to as flexibility, pertains to a system’s

capacity to handle unexpected situations that the system creators could not have anticipated.

Hence, flexibility refers to the ability of an ML system to handle new data samples that come

from a different distribution than the training samples. Arguably, many present-day ML systems

fail at this task. Finally, extreme generalization pertains to a system’s ability to handle entirely

novel tasks that possess only abstract commonalities with previously encountered situations; or,

in Chollet’s words: “[the] adaptation to unknown unknowns across an unknown range of tasks and

domains” (Chollet 2019, p.11). Currently, only humans are capable of such levels of generalization.

Geirhos et al. (2020) argue that shortcut learning is a key reason ML systems often fail to

demonstrate broad generalization capabilities. Simply put, shortcuts are solutions that work well on
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standard benchmark problems but fail to generalize when applied to more realistic situations, such

as real-world scenarios (Geirhos et al. 2020, p.1). From a theoretical standpoint, ML algorithms

learn a function, or a set of decision rules, that can map one or multiple input variables to one or

multiple output variables. The learned decision rules can be arranged in a continuum ranging from

(a) uninformative rules to (b) overfitting rules to (c) shortcut rules to (d) intended rules (Geirhos

et al. 2020). Uninformative rules are decision rules that fail to achieve good performance on the

data they were initially derived from and, as a result, represent ineffective solutions to a given

problem. If a set of decision rules yields good performance on the data it was trained on but not

on an independent and identically distributed (i.i.d.) test set, the ML system is said to suffer from

overfitting (Ng 1997). A model that performs well on both the training and i.i.d. test sets, but

fails on out-of-distribution (o.o.d.) samples, is said to apply shortcut rules. Such models typically

score high on standard benchmark datasets in lab conditions or competitions but fail in real-world

situations, where data distributions typically change or drift over time. Hence, the ML is not able

to perform broad generalization. Finally, there are decision rules that work well on i.i.d. samples

as well as on o.o.d. samples. These models are said to have learned the intended rules and, hence,

also perform well in unexpected situations.

2.2. Sources of Shortcuts

Shortcut learning has mostly been identified for image data, and occasionally for text or audio

data. For images, typical examples include ML models that learned to identify objects in images by

identifying distinctive backgrounds (Zhu et al. 2017), positions (Rosenfeld et al. 2018), or textures

(Geirhos et al. 2018) of objects, rather than the objects themselves. One can argue that these cases

are instances of confounding, a much-discussed threat to the internal validity of causal models

(Schölkopf 2022). While confounding represents a serious problem for deriving causal statements
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from data-driven models, it is not necessarily a problem for predictive models, as long as the

spurious correlations learned by the model are stable across populations and over time.

Another more subtle and lesser known source of shortcuts is clustering of observations and unob-

served cluster characteristics. Here, ML models learn to identify groups of cases that have distinct

characteristics with regards to the response variable of a model. The aforementioned pneumonia

detection model is an example of this (i.e., the model learned to recognize scans from certain X-

ray systems used in hospitals with particularly high pneumonia rates). Other examples include

ML-based text classifiers that learned to classify texts by identifying biased annotators of texts

instead of the annotations themselves (Geva et al. 2019). The groups of cases can also be of a

temporal nature. For example, external shocks can lead to temporal shifts in the response variable

of a model that cannot be anticipated from the information available at training time. For instance,

in the above-mentioned hospital example, changes of local healthcare policies could lead to shifts

in the distribution of patients between hospitals and, in turn, to the prevalence rates of certain

diseases in certain hospitals. The performance of an ML model, which would use the identity of a

hospital, department, or machine as a shortcut in order to detect diseases, would very likely drop

as a consequence.

To summarize, when there are commonalities in groups or time periods which introduce depen-

dencies between cases, it is possible that ML models do not learn to relate the features of the cases

to the response variable, but rather learn to identify groups and time periods which might differ

in quality. The functional relationships to distinguish these groups and time periods might then

widely deviate from the actual relationships between the features and the response. Given that

these groups and time periods might be easier to identify, the performance metrics calculated on

i.i.d. test data could be heavily misleading. Models that learned to distinguish groups and time

periods will also likely display a weak performance on new groups and time periods (o.o.d. test

data).
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2.3. Shortcut Learning in Tabular Data

To the best of our knowledge, the problem of shortcut learning has not been discussed in the

context of tabular data. In the remainder of this research note, we assume a panel data structure

such as the one visualized in Figure 1. The dataset contains observations of multiple entities (e.g.,

companies) over multiple time periods (e.g., years). We will show that this combination of entity

groups and time periods makes tabular panel data prone to shortcut learning.

In general, in order to evaluate the predictive performance of an ML system, it is standard

practice to train and assess its performance on several disjoint data samples (Friedman et al.

2009). The most fundamental sampling approach consists of randomly splitting a dataset into

training and test sets. Usually, a random split leads to samples in the training and test sets that

are sufficiently similar to each other or, in mathematical terms, that are drawn from the same

probability distribution. Hence, the test set is said to be independent and identically distributed

with regard to the training set (i.i.d.). However, as illustrated on the left of Figure 1, for complex

multi-dimensional datasets random sampling might overlook possible temporal patterns that may

be present in the data (e.g., economic expansion or contraction) or similarities within groups of

entities (e.g., observations referring to the same company, industry, or geographical region).

For datasets with temporal dependencies, there is a growing awareness that the use of random

sampling is impracticable due to the risk of leakage (Kaufman et al. 2012). Simply put, leakage

refers to situations in which a model has been trained on information that would realistically not

be available at the time of prediction – e.g., predicting a firm’s credit rating in Q3 2022 based on

a model trained on data from Q4 2022. Leakage leads to over-optimistic assessments of a models’

predictive performance. To resolve this problem and avoid look-ahead bias, one typically splits the

data in a time-based manner, as illustrated in the middle of Figure 1, to ensure that all training

samples are anterior to the testing samples (Hyndman and Athanasopoulos 2018).
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Detecting dependencies related to groups of entities is often much harder in complex multi-

dimensional datasets. While in econometrics it is common to explicitly control for group dependen-

cies through fixed effects (e.g., company or industry dummies), there seems to be less awareness

about the risk of shortcut learning when group dependencies are present in ML. Therefore, sam-

pling strategies that take groups of entities into consideration are less common. A notable exception

are spatial cross-validation strategies in the geosciences, where models are trained on observations

from one geographical region and tested on observations of a held-out region (Ploton et al., 2020;

Beigaitė et al., 2022). Figure 1 (right) illustrates how this idea can be transferred to an entity-based

grouping.

Figure 1 Random, Time-based, and Entity-based Sampling

In order to assess how commonly the above-discussed sampling strategies are considered, we

conducted a literature review of papers published in journals from the AIS Senior Scholars’ List of

Premier Journals that applied predictive modeling in their research process.

Our review contained 228 articles published over the past 15 years. The key results are presented

in Table 1. The table distinguishes between cross-sectional and panel data settings, as well as

the above introduced sampling strategies. Most studies working with cross-sectional data apply

random sampling. For panel data, time-based sampling is the most common sampling strategy;

yet, about a fourth of these studies used random or entity-based sampling, which introduces the
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risk of overlooking a shortcut learning bias. Over both types of data, entity-based sampling was

least common and no study used a combined time- and entity-based sampling.

Table 1 Common Sampling Strategies in ML-Based Research

Random Time-based Entity-based Other Total

Cross-Sectional data 148 23 8 6 183
Panel data 11 31 3 0 45

Total 159 54 11 6 228

3. Detecting Shortcut Learning Bias in Tabular Data

Shortcut learning often goes unnoticed, because it is difficult to detect with the testing procedures

that are common today. Note that all of the above-introduced sampling strategies are only proxies

for measuring an ML model’s underlying ability to predict phenomena in future data. Yet, as all

sampling strategies inevitably have to rely on historical data, it is difficult to judge whether a

model relies on shortcuts or uses intended features and decision rules for making predictions. In the

following sections, we will introduce a novel sampling strategy that has the potential to uncover

shortcut learning and demonstrate it with simulated data.

3.1. Detection through Combined Time- and Entity-based Sampling

Our proposed sampling strategy to detect shortcut learning is inspired by the practice of comparing

an ML model’s predictive performance on training and test data in order to detect the well-known

issue of overfitting. If a model’s predictive accuracy is higher on training data than on independent

and identically distributed test data, the model is said to overfit. A model that overfits relies on

spurious associations in the training data that are not present in the test data. Recall that the

definition of shortcut learning is that a model performs well on both the training and i.i.d. test

sets, but fails on out-of-distribution samples. Hence, we propose to compare a model’s predictive

accuracy between an i.i.d. test set and an o.o.d. test set in order to detect shortcut learning. To
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generate a test set that is sufficiently out-of-distribution, we combine the above-discussed, but rarely

applied, time- and entity-based sampling strategies, leading to the combined sampling strategy

depicted in Figure 2. In other words, we propose to train an ML model on just a sample of entities

over a well-defined historical time period and test it on successive data of held-out entities. If the

model’s performance is substantially lower on the o.o.d. test set than on an i.i.d. test, generated

for example through random sampling, it suffers from shortcut learning bias.

Figure 2 Combined Time- and Entity-based Sampling

3.2. Demonstration with Simulated Data

To validate that the proposed combined time- and entity-based sampling strategy indeed detects

shortcut learning, we provide an illustrative numerical analysis based on simulated data and the

evaluation on energy consumption data in the following.

3.2.1. Setup of Simulation. The simulation was conducted as follows. We generated three

observable independent input variables, denoted as x1, x2, and x3, and one observable dependent

output variable, denoted as y. The data points are additionally associated with unobserved entities

and time period variables. Each unique entity and time period has a distinct fixed influence on

y, which is expressed by γe and γt. γe and γt are randomly drawn from a normal distribution
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with mean zero and a standard deviation of 10 for each entity and time period, respectively. y is

further related to x1, but not to x2 and x3. Hence, we simulated the data in such a way that y is

influenced solely by x1, γe, and γt, with x2 and x3 having no effect on y. The value of y is further

mostly determined by the entity and the time period, while x1 has a limited effect on y. These

relationships are formalized in the following equation, which formed the foundation for our data

generating process:

y= x1 + γe + γt (1)

Further, the entity has randomly chosen effects on x1 and x2 that are a draw (η in x1 and µ in

x2) from a normal distribution for each entity, while time has randomly chosen effects (τ) on x3

that are a draw from a normal distribution for individual time periods. Apart from the effect of

entity and time, the dispersion of x1, x2, and x3 adheres to a standard normal distribution and is

given by ϵ1, ϵ2, and ϵ3.

x1 = η+ ϵ1 (2)

x2 = µ+ ϵ2 (3)

x3 = τ + ϵ3 (4)

Figure 3 visualizes the resulting simulated data. From the color coding, one can clearly see

distinct clusters of data points which differ in their level of y. The level of y further differs between

the time periods, as is visible in a comparison between the left and right panel of Figure 3. Note

that there is no visible relationship between y and x2, and even the existing relationship between

y and x1 is not clearly visible in the plots.

3.2.2. Training of ML Models. Eyeballing the plots without being aware of the existence

of entities and time periods, one could think that the clusters with varying levels of y stem from
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Figure 3 Relation between x1, x2, and y for a time period with high y (left panel) and low y (right panel).

complex non-linear relationships between y and x1, x2, and x3 (the latter not being displayed in the

plot). A flexible ML model that is able to consider interactions and non-linearities could be able to

accommodate these complex relationships and therefore provide greater predictive accuracy than

an additive linear model. However, due to the random variation in the association between entities

and time periods and the dependent variable, any such identified relationships are likely shortcuts

that work only on i.i.d. data, but not on o.o.d. data, e.g., new entities and time periods.

To empirically demonstrate this issue, we trained a Lasso (least absolute shrinkage and selection

operator) and a Random Forest regression model both tasked with predicting the value of y based

on the predictors x1, x2, and x3 using the i.i.d and o.o.d. sampling strategies described earlier. Table

2 summaries the Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and Coefficient

of Determination (R2) for both models over all four sampling strategies. Several interesting obser-

vations can be drawn from the performance data. First, the Random Forest model, which is able to

capture interactions and non-linear relationships, dominates the additive and linear Lasso model

for all sampling strategies. This is interesting, because the relationships between the considered

predictors and the outcome were designed to either be perfectly linear (x1) or non-existent (x2

and x3). Second, for both ML models the predictive performance on o.o.d. data is substantially



13

Table 2 Performance of different ML models trained with different sampling strategies on the simulated data

Sampling Strategy Evaluation

MAE RMSE R2

L
a
ss
o

i.i.d. (test) 8.490 10.465 0.102

o.o.d. (time) 9.065 11.049 0.084

o.o.d. (entity) 14.081 16.826 -0.157

o.o.d. (time/entity) 17.127 19.819 -0.116

R
a
n
d
o
m

F
o
re
st i.i.d. (test) 6.552 8.572 0.397

o.o.d. (time) 7.839 9.751 0.286

o.o.d. (entity) 16.188 19.113 -0.494

o.o.d. (time/entity) 19.358 22.462 -0.433

lower than on i.i.d. data. Third, the relative drop in performance is higher for the more flexible

Random forest model compared to the simpler Lasso model. Taken together, these points support

the suspicion that both models learned to take shortcuts by implicitly identifying the unobserved

entity and time period clusters via their associations with x1 and x2 (for entities) and x3 (for time

periods).

Another interesting question is whether common explainable artificial intelligence (XAI) meth-

ods, such as permutation-based feature importance, are also biased by the existence of shortcuts.

Table 6 displays the deterioration in R2 when randomly shuffling the values of predictors x1, x2, and

x3. Looking at the Lasso model, one could infer that it relies strongly on x2. Looking at the Ran-

dom Forest, one could infer that it mainly relies on x2 and x3. As according to the data-generation

process described in Equation 1 neither x2 nor x3 are actually related to y, the results suggest that

explainability methods such as permutation-based feature importance are also affected by shortcut

learning bias.

To summarize, the results of our numerical analysis using simulated data strongly suggest that

ML models exploit unobserved entity and time clusters as shortcuts, leading to overoptimistic

performance evaluations and biased explainability metrics.
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Table 3 Permutation importance for variables x1, x2, and x3.

Method ∆R2(x1) ∆R2(x2) ∆R2(x3)

Lasso 0.010 0.073 0.010
Random Forest 0.040 0.176 0.236

3.3. Case Study: Energy Consumption Prediction

The ASHRAE Great Energy Prediction Dataset, which was published by the American Society

of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), presents a comprehensive

view of energy consumption, architectural characteristics, and meteorological conditions of 1,400

structures across diverse regions of the United States (Miller et al. 2020). This dataset acts as

an instrumental resource for the detailed examination of energy utilization trends, the formula-

tion of strategies aimed at enhancing energy efficiency, and the projection of prospective energy

conservation.

3.3.1. Overview of the Dataset and Methods The dataset provides extensive and detailed

information about the various structures, which includes the buildings’ geographical information,

function or utility, spatial dimension (measured in square feet), construction year, and number of

floors. Secondly, the energy usage component of the dataset provides granular energy consumption

data for each of 1,000+ buildings and their respective metering devices. This consumption data is

denoted in kilowatt-hours (kWh) and indexed by a timestamp as well as the meter type. Lastly,

the dataset includes a weather conditions component, which furnishes daily meteorological data for

each location represented in the dataset. This weather data encapsulates variables such as ambient

temperature, cloud cover, precipitation, atmospheric pressure, wind velocity, and wind direction.

In order to have more stable estimates than in individual test runs, we conducted multiple cross-

validation iterations. For each of the five cross-validation iterations, our training dataset – i.e., i.i.d.

– comprised 100,000 samples while all test sets – i.e., i.i.d. and o.o.d. – comprised 20,000 unseen
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samples. Given that our dataset spanned from January 1, 2016, to December 31, 2016 – i.e., a full

year – we defined November 1, 2016, as our temporal cutoff point, hence, resulting in a temporal

split that not only adheres to an 80/20 split but that also coincides with the beginning of the

winter months. We defined the feature site id as our entity feature for the entity-based sampling

strategies.

We further used a comprehensive set of machine learning approaches.

1. a generalized linear baseline – i.e., a Lasso approach;

2. a Random Forest approach;

3. an eXtreme Gradient Boosting (XGBoost) approach (Chen and Guestrin 2016);

4. a LightGBM approach (Ke et al. 2017) – i.e., a gradient-boosting approach where trees are

grown vertically as opposed to horizontally;

5. a TabNet approach (Arik and Pfister 2021) – i.e., a popular deep learning architecture specif-

ically designed for tabular data; and

6. an Auto-ML approach based on the Scikit-Learn module (Pedregosa et al. 2011).

3.3.2. Results As can be observed in Table 4, it is primarily evident that aside from our

benchmarks – i.e., a Lasso approach – there happens to be a marked deterioration in performance

when any data sampling strategy other than a random one is utilized. This holds true for all

implemented algorithms. Specifically, sampling a dataset based on a specific entity, consequently

instigating a substantial shift in distribution, escalates the deterioration of all models in terms of

Mean Absolute Error (MAE), Mean Squared Error (MSE), or Root Mean Square Error (RMSE).

This decline is remarkable, considering that the problem, the dataset, and the methodologies

remained constant. Yet, in many academic scenarios, results would typically be reported based

on a random sampling approach, leading, as would be the case here, to excessively optimistic

performance estimates.
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It is intriguing to note the relative stability of the Lasso approach showing minimal variance

compared to more advanced methods. Despite lagging behind other methodologies in terms of

performance on i.i.d. (test) sets, it outperformed most other approaches when dealing with o.o.d.

samples. This implies that more straightforward procedures, perhaps due to their less complex

nature, have a lower susceptibility to changes in distribution, thus providing a more robust solution

in certain situations. In addition, TabNet shows favorable results in i.i.d. data but also only a

limited deterioration in o.o.d. data which hints towards it also being a particularly good choice.

4. Addressing Shortcut Learning Bias: A Comprehensive Framework
for Remediation

4.1. A Framework to Mitigate Shortcut Learning Bias

After identifying the problem of shortcuts, we describe a framework to cope with the problem

in this section. The design of this framework is based on the observation that shortcut learning

could be very common also in tabular data (as is the case in images and text, Geirhos et al. 2020)

which makes many applications of machine learning in research susceptible to the problem. We

suggest a three-step procedure in which the first step considers creating an i.i.d. distributed dataset

without confounding observed features, the second step aims to detect potential shortcuts based

on clustering (unobserved confounding features/clustering), and the third step suggests actions

to alleviate or remove the problems resulting from clustering. The framework is mainly based on

arguments of how to deal with confounding in machine learning (Schölkopf 2022) and unobserved

characteristics in traditional statistical learning (Wooldridge 2010).

4.1.1. Data Quality Insurance and Study Design One problem that Geirhos et al. (2020)

highlights is that while research is usually discussing test set performance, the actual interest will

rather be the performance that will be achieved on new cases. It is common practice to assume

that later new cases will be similar to the randomly drawn test cases, which is why this is not often
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Table 4 Energy consumption forecast results

Sampling Strategy Evaluation

MAE RMSE R2

L
a
ss
o

i.i.d. (test) 134.804 269.398 0.346

o.o.d. (time) 135.925 249.094 0.34

o.o.d. (entity) 160.287 276.921 0.328

o.o.d. (time/entity) 153.105 266.671 0.286
R
a
n
d
o
m

F
o
re
st i.i.d. (test) 69.269 134.142 0.836

o.o.d. (time) 79.061 164.23 0.712

o.o.d. (entity) 207.198 540.684 -2.415

o.o.d. (time/entity) 184.67 484.451 -2.241

X
G
B
oo
st

i.i.d. (test) 51.159 123.113 0.857

o.o.d. (time) 62.85 150.637 0.755

o.o.d. (entity) 200.501 485.483 -1.472

o.o.d. (time/entity) 179.119 427.171 -1.272

L
ig
h
tG

B
M

i.i.d. (test) 57.468 125.066 0.853

o.o.d. (time) 67.217 148.939 0.76

o.o.d. (entity) 204.42 449.055 -1.075

o.o.d. (time/entity) 181.72 402.759 -0.984

T
a
bN

et

i.i.d. (test) 96.112 204.009 0.622

o.o.d. (time) 102.959 211.857 0.522

o.o.d. (entity) 153.56 328.34 0.009

o.o.d. (time/entity) 141.662 308.009 0.002

A
u
to
-M

L

i.i.d. (test) 35.273 87.11 0.931

o.o.d. (time) 41.789 104.519 0.88

o.o.d. (entity) 166.416 373.962 -0.355

o.o.d. (time/entity) 156.826 346.036 -0.295

discussed in machine learning research. However, for really achieving similar performance as ’in

the lab’, one needs to make an honest assessment whether the data one is using is representative

of later use cases. If data is not representative of the later use case, it will generally be difficult

to train a reliable model. This is sometimes referred to as training distribution bias (Bueff et al.

2022).
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Figure 4 Framework for mitigating shortcut issues.

However, the discussion on i.i.d. and o.o.d. data sets acknowledges that new data will often not

follow the exact same data generating process as i.i.d. data. Researchers and practitioners should

therefore include actions to allow for generalizability. Considering the arguments on confounding

as in Schölkopf (2022), one action to generalization is to reflect causal relationships in models and

include features accordingly. This aims at preventing learning functional relationships to features

that will not extend to new data with widespread examples such as in Alcorn et al. (2019) or Beery

et al. (2018).

This paper mainly discusses bias in models by pooling different datasets. In one focal earlier

described example, pneumonia is not detected via the x-ray images itself, but by identifying hos-

pitals those images come from. This problem would, of course, not appear if the study design used

truly i.i.d. data without any clusters that are later pooled. If this is not the case, a model can be

subject to possible shortcuts due to bias from pooling data. However, there are remedies in this

case that will be described in the next steps.
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4.1.2. Examination and Diagnosis If there is reasonable suspicion that cases are not inde-

pendent and differ in unobserved characteristics, it is worth assessing whether this results in bias of

models and performance metrics. Besides straightforward clusters such as entities and time periods,

the subsets could come from other clusters such as geographical regions.

We suggest two approaches to check for shortcut problems. The first one is to directly create

synthetic o.o.d. data from the available data and assess the performance metrics on this data. This

is the approach that was also used in Table 1 to detect shortcuts and was discussed earlier in the

paper. If the performance metrics deteriorate compared to a simple i.i.d. test sample, this indicates

that shortcuts are present.

For the second suggestion, researchers and practitioners could assess which level of performance

could already be achieved by building a model of entities, years, or other clusters as features,

respectively. If this model already achieves a performance that is similar to the level of the i.i.d.

test performance or above, this is some indication of potential shortcuts. The advantage of this

approach compared to the o.o.d. sampling lies in the fact that the models do not need to be

refit for this procedure, which could be computationally intensive when checking many potential

cross-sectional groups. This is indicated by the following equation:

P (f(X),D) Θ P (g(entity, year),D) (5)

where f is the functional relationship fit on the X features, g is a functional relationship fit

on the entity and year, P is a performance metric, D is the respective test data, and Θ is some

operator of comparison.

4.1.3. Resolution Based on the results from the shortcut detection, we suggest several actions

to mitigate shortcut problems. These actions could be repeated until the metrics in the second step

do not indicate shortcuts anymore. In this way, models could usually be used already in case there
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are no indications of shortcuts. The solution aims to remove bias in estimators from unobserved

variables. This bias results from the following circumstances (see Wooldridge 2010 for a discussion

in traditional econometrics). The causal structure has the following form:

Yci = h(Xci)+Uc + ϵci (6)

where h is the true functional relationship, Uc are unobserved variables of cluster c (the clusters

consist of combinations of the entity and the time period), ϵci is some of i.i.d. error term, and i is

an index for different cases of the same cluster. However, if Uc correlates with some variables of

Xci and one estimates a functional relationship f neglecting Uc, there will be a bias in the model

in the following form.

Bias(f(Xci)) =E[f(Xci)]−E[Yci|Xci] ̸= 0 (7)

where the expectation of the estimator E[f(Xci)] will differ from the true expected value

E[Xci|Yci] of Yci conditional on Xci.

Practically, there are several potential options. The first option could lie in feature selection. In

cases when only a small number of features in Xci is correlated with Uc, there could be a trade-off to

remove these features in order to remove the bias in the model. Researchers and practitioners could

then trade a weaker i.i.d. test performance for a more robust o.o.d. performance. However, this

approach requires a very clear understanding which variables could correlate with the unobserved

variables besides a willingness to remove them from the model.

As a second remedy, we suggest following a similar procedure as is used by demeaning in fixed

effects models in panel data econometrics (Wooldridge 2010).

X∗
ci =Xci − X̄c, Y ∗

ci = Yci − Ȳc (8)

where X̄c are the means of features by cluster and Ȳc are the means of targets by cluster. As this

removes the unobserved variables, the estimated relationship is then unbiased for the i.i.d. data:
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Bias(f∗(X∗
ci)) =E[f∗(X∗

ci)]−E[Y ∗
ci|X∗

ci] = 0 (9)

The unbiased estimates of the target could then be retrieved by adding the mean target in the

cluster derived from the training data to f∗(X∗
ci):

prediction(X∗
ci) = f∗(X∗

ci)+ Ȳc (10)

One then needs to store some memory X̄1, X̄2, ..., X̄C and Ȳ1, Ȳ2, ..., ȲC of the train mean features

and targets in the C clusters. While this solves the bias on the i.i.d. data, where the cluster

(combinations of years and entities) will be known, the clusters are unknown in the o.o.d. data.

The actions that are available, therefore, depend on the specific situation: (1) Where the entity

means over multiple years from the past are the crucial part of the variation in Uc, initializing new

values in the memory for future years with the mean over the past values of the entity will improve

the performance over neglecting the clusters. (2) In many applications, it will be possible to acquire

information on the cluster or even sample a small amount of cases for a new cluster. It is then

straightforward to calculate the feature and target means in the cluster. (3) In other applications,

it will be possible to have some sequential processing of cases. The estimates for mean features and

targets in a new cluster could then be learned in a reinforced learning way. (4) If no information

on the mean features and targets that could be expected in new clusters could be acquired. The

means in the training sample should be used in making predictions. In this way, a biased model

does at least not further add to the general uncertainty of forecasts. The uncertainty in the model

should then be accounted for in decision-making.

4.2. Illustration of the Shortcut Learning Bias Mitigation

In this section, we show how to address the shortcut learning problems in the simulated data as used

earlier. The earlier analyses have detected problems of shortcuts as indicated by a deterioration in
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Table 5 Simulation results on shortcut mitigation

Sampling Strategy

MAE RMSE R2

No further information:

L
a
ss
o

i.i.d. (test) 0.796 0.997 0.992

o.o.d. (time) 7.341 8.892 0.358

o.o.d. (entity) 11.317 13.322 0.166

o.o.d. (time/entity) 16.170 18.782 -0.158

R
a
n
d
o
m

F
o
re
st i.i.d. (test) 0.001 0.009 1.000

o.o.d. (time) 7.268 8.842 0.365

o.o.d. (entity) 9.891 12.708 0.241

o.o.d. (time/entity) 15.319 18.240 -0.092

Group information acquirable:

L
a
ss
o

i.i.d. (test) 0.796 0.997 0.992

o.o.d. (time) 0.841 1.058 0.991

o.o.d. (entity) 0.845 1.056 0.995

o.o.d. (time/entity) 0.842 1.049 0.996

R
a
n
d
o
m

F
o
re
st i.i.d. (test) 0.001 0.009 1.000

o.o.d. (time) 0.002 0.020 1.000

o.o.d. (entity) 0.002 0.017 1.000

o.o.d. (time/entity) 0.002 0.018 1.000

performance for moving from i.i.d. metrics to o.o.d. metrics. We, therefore, start by demeaning the

training features and targets within all combinations of the entity and time period in the training

data (the means are stored as a memory). We fit a clean model afterward and make a prediction for

the test data by first deducting the training cluster means for the features and then later adding

the training cluster mean of the target to the prediction. The resulting performance metrics are

displayed in the first line of each section in Table 5. One can see that after the bias is removed,

the model captures the underlying functional relationship almost perfectly, as indicated by low

MAE and RMSE and an R2 above 0.9. Further assessing Table 6, one can see that the variable
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importance now gives evidence that only variable x1 is important in both models, which correctly

reflects the causal structure of the data-generating process.

We then discuss the prediction performance on the o.o.d. samples. This is presented in the

following lines in Table 5. We make several observations. The first section of the table contains

results where no further information on the clusters could be acquired and means over entities

(o.o.d. time), time periods (o.o.d. entity), or the whole training sample (o.o.d. time/entity) are used.

One could see from the table that the performance is stronger compared to Table 2. Furthermore,

the more complex model remains superior to the more simple model. The second section of Table

5 then presents results, where information could be acquired by sampling a small number of cases

from each new cluster for learning the quality of the cluster (i.e., having access to prior electricity

bills). After including the derived means, the functional relationships are captured about as good

as in the i.i.d. sample.

Table 6 Permutation importance for variables x1, x2, and x3 after shortcut mitigation

Method ∆R2(x1) ∆R2(x2) ∆R2(x3)

Linear model 0.009 0.000 0.000
Random Forest 0.009 0.000 0.000

5. Conclusion

This paper studies the prevalence of shortcut learning in tabular data. Shortcut learning has

previously been widely found in unstructured data such as text or images, but has not been

discussed in tabular data to the best of our knowledge. We discuss how shortcuts appear in theory

and show that shortcuts easily appear in simulated data and in energy consumption prediction.

Given that studies in a literature review mostly rely on random sampling, the problem is likely

widespread. While many studies might not suffer from the problem, we aim to start a discussion



24

about where shortcuts might have influenced results in the past. We further suggest discussing

measures of potential shortcut problems in future work.
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