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enables us to forecast based on the assumption that the current trend of climate change con-

tinues, while its estimation is easier and less expensive than that of the GCMs. We combine

long-run 1-thousand-year frequency climate data for the period of 798 to 1 thousand years ago

and short-run annual data from 850 to 2014, by scaling the short-run climate data. We present

the evolution of long-run and short-run climate data using descriptive statistical analysis. We

estimate the new score-driven threshold climate model using annual data from 850 to 2014 for

the global sea ice volume Icet and Antarctic land surface temperature Tempt, from 850 to 2014,

for which we use the atmospheric CO2,t concentration as a clustering variable, to define sub-

periods of climate change. We report out-of-sample interval forecasts from 2015 to 2114. We find

that if the current trend of climate change continues, then global sea ice will disappear around

2077, and the corresponding mean± 2 standard deviation interval forecast is [2067, 2088].
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1. Introduction

Climate change is the most important global issue on Earth. The influence of humanity on

Earth’s climate started approximately 10,000 to 15,000 years ago (i.e., the start of the Anthro-

pocene), by commencing agricultural activities such as cultivating plants and livestock (Ruddi-

man, 2005). That influence significantly increased after the Industrial Revolution (from 1769 to

1840, approximately), and it further increased with an accelerating growth rate during the 20th

and 21st centuries. Earth’s population rose from 1 billion in 1800 to 8 billion in 2023, which was

associated with a significant global-scale economic expansion. One of the consequences is rising

global greenhouse gas (GHG) emissions. Compared to the second half of the 19th century, the

global land surface temperature for the end of the 21st century is very likely to rise by 1.0 to

1.8 ◦C under the “very low GHG emissions scenario”, by 2.1 to 3.5 ◦C for the “intermediate

GHG emissions scenario”, and by 3.3 to 5.7 ◦C under the worst-case scenario, “very high GHG

emissions scenario” (IPCC, 2021). The latter scenario implies dramatic consequences on nature

and wildlife in terrestrial, wetland, and ocean ecosystems, and on humanity concerning food and

water security, migration, health, higher risk of conflict worldwide, reduction of global economic

product, and a possible collapse of the current societal organization (IPCC, 2021).

In this paper, we focus on using the score-driven threshold climate model to assess the

possibility of ice-free Oceans at the global level, by forecasting global sea ice volume until the

year 2114. Several works in the literature focus on predicting sea ice volume for the Arctic

Ocean. Based on the simulation results of a general circulation model (GCM), Holland, Bitz,

and Tremblay (2006) predict near-ice-free September conditions for the Arctic Ocean by the

year 2040. Boé, Hall, and Qu (2009), use CIMP3 (Coupled Model Intercomparison Project,

CMIP, Phase 3) GCMs and predict the ice-free Arctic Ocean around the year 2100, under

the assumption of medium future GHG emissions. Wang and Overland (2009) use alternative

CMIP3 GCMs and predict the nearly ice-free Arctic Ocean for 2037. Wang and Overland (2012)

update those forecasts for CMIP5 (CMIP, Phase 5) and predict the nearly ice-free Arctic Ocean

around September 2035, under the highest GHG emission scenario. Stroeve et al. (2012), use
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CMIP3 models and, under a lower GHG emissions scenario, predict that the ice-free Arctic Ocean

after 2100 and ice-free conditions in 2045 within one standard deviation of the mean. However,

they find that turning to the end of the 21st century, the CMIP5 multi-model ensemble mean

never reaches ice-free conditions. IPCC (2014) predicts an ice-free Arctic summer around 2050,

under the scenario of the highest possible GHG emissions. That forecast is updated by IPCC

(2021) which reports that the Arctic Ocean will likely become practically ice-free in September

before the year 2050 under all Shared Socioeconomic Pathway (SSP) scenarios. Melillo et al.

(2014) report that the Arctic Ocean is expected to be ice-free in summer by the 2030s, and

the subsequent report of USGCRP (2018) (US Global Change Research Program, USGCRP)

predicts the ice-free Arctic Ocean around 2050.

The work of Guarino et al. (2020) predicts that summer sea ice floating on the surface of the

Arctic Ocean could disappear entirely by 2035. Guarino et al. (2020) also present a summary

of forecasting results for alternative climate models, according to which multi-model CMIP3

to CMIP6 the mean predictions with ranges for a summer sea ice-free Arctic are (i) the year

2062 with [2040,2086] for CMIP3, (ii) the year 2048 with [2020,2081] for CMIP5, and (iii) the

year 2046 with [2029,2066] for CMIP6. We note that the latest year of sea ice disappearance

for CMIP6 models is 2066 and that 50% of the models predict sea ice-free conditions between

the years 2030 and 2040. In recent work, Docquier and Koenigk (2021) show that the CMIP6

(CMIP, Phase 6) models which perform the best at simulating Arctic sea ice trends, project the

first ice-free conditions around 2035 under SSP5-8.5, which is the SSP scenario of continually

accelerating GHG emissions meaning a fossil-fueled development (O’Neill et al., 2016). The

work of Diebold et al. (2022) reports point, interval, and density forecasts of the area, extent,

thickness, and volume of Arctic sea ice. Those authors impose the joint constraint for these

measures, according to which they simultaneously arrive at an ice-free Arctic sea. They apply

this forecasting procedure to carbon-trend models of sea ice and atmospheric CO2 concentration

and time-trend models of sea ice and time. The resulting forecasts are mutually consistent and

predict a nearly ice-free Arctic summer by the mid-2030s with an 80% probability.
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We contribute to the literature by updating the recent score-driven threshold ice-age model

of Blazsek and Escribano (2023). In the work of Blazsek and Escribano (2022), the score-driven

ice-age model is introduced, and it is shown that the statistical performance of that model

is superior to the statistical performance of the ice-age model of Castle and Hendry (2020).

Blazsek and Escribano (2022) also show that the forecasting performances of both models are

similar and not very effective for the climate variables for the Anthropocene. Motivated by that

result, Blazsek and Escribano (2023) introduce the score-driven threshold ice-age model. Those

authors use the same data for climate and orbital variables for the last 798-thousand-year period

as Castle and Hendry (2020) and Blazsek and Escribano (2022), and they forecast global ice

volume, atmospheric CO2, and Antarctic land surface temperature for the last 100,000 years

of the sample (i.e., in-sample forecasts) and the forthcoming 5,000 years (i.e., out-of-sample

forecasts). Blazsek and Escribano (2023) use Ward’s linkage clustering procedure (Ward, 1963),

to define sub-periods of climate change. The score-driven threshold ice-age model improves the

forecasting performances of the models of Castle and Hendry (2020) and Blazsek and Escribano

(2022). Nevertheless, Blazsek and Escribano (2023) use 1-thousand-year frequency observations,

which does not allow the measurement of climate effects of humanity for the last 250 years with

unprecedented high levels of CO2,t and Tempt, and unprecedented low levels of Icet.

We perform an extensive model selection analysis to find the optimal score-driven model

specification, which we name the score-driven threshold climate model. We present the technical

details of the score-driven threshold climate model specification and its statistical inference. We

combine long-run 1-thousand-year frequency climate data for the period of 798 to 1 thousand

years ago and short-run annual data from 850 to 2014, by scaling short-run climate data to

long-run climate data. To study what would have happened to global ice volume if GHG

emissions had stopped, we perform in-sample forecasting analysis using the estimation windows

850 to 1906 and 850 to 1979. The in-sample forecasts indicate that observed Icet is below the

forecast interval after 2001 and observed Tempt is above the forecast interval from the mid-

1990s. According to these in-sample forecasts, Icet would not disappear in the forthcoming
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decades. Finally, we estimate the model for the dependent variables Icet and Tempt, and we

report out-of-sample forecasts for the period of 2015 to 2114. We find that if the current trend

of climate change continues, then all global sea ice will disappear around the year 2077, and the

corresponding mean± 2 standard deviation interval forecast is [2067, 2088].

The remainder of this paper is organized as follows: Section 2 describes the data. Section 3

presents the time series methods. Section 4 presents the empirical results. Section 5 concludes.

2. Data

In this section, we describe the data for the climate models of this paper. We use long-run

and short-run climate data on global ice volume, Antarctic land surface temperature, and at-

mospheric CO2 concentration. The long-run climate data is from 798 to 1 thousand years ago.

The short-run climate data is for the period of the year 850 to the year 2014. Long-run and

short-run climate data are combined by scaling the measures of the short-run variables to the

measures of the long-run variables. We provide a descriptive statistical analysis for all variables.

2.1. Long-run climate data

For the long-run climate data, the variables are global sea ice volume Icet, Antarctic land

surface temperature Tempt, and atmospheric CO2,t concentration, which are observed with a

1-thousand-year observation frequency. These data are also used in the works of Castle and

Hendry (2020) and Blazsek and Escribano (2022, 2023). The data source of global sea ice

volume Icet is the work of Lisiecki and Raymo (2005), in which time series of the δ18O, obtained

from calcium carbonate (CaCO3) shells of foraminifera, are used to approximate temperature.

Those authors use benthic records of foraminifera from seafloor sediment, which were collected

at 57 globally distributed sites. Those sites are well-distributed in latitude, longitude, and

depth in the Atlantic, Pacific, and Indian Oceans. The data source of Antarctic land surface

temperature Tempt is the work of Jouzel et al. (2007), in which temperature data were obtained

within the European Project for Ice Coring in Antarctica (EPICA) at the Concordia Station

(Dome C), by using deuterium δDice measurements from the surface down to 3,259.7 meters.
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Within the EPICA, two deep ice cores have been drilled at Kohnen Station and Concordia

Station (Dome C). The drillings were stopped at or a few meters above bedrock at a depth of

2,774 meters and 3,270 meters, respectively. The data source of atmospheric CO2,t is the work

of Lüthi et al. (2008), in which changes in past atmospheric CO2 concentrations are determined

by measuring the composition of air trapped in ice cores from EPICA.

Castle and Hendry (2020) and Blazsek and Escribano (2022, 2023) also use the following

variables as explanatory variables in the ice-age models: (i) eccentricity of Earth’s orbit Ect,

(ii) obliquity of Earth’s rotational axis relative to the ecliptic Obt, and (iii) precession of the

equinox Prt. We omit these variables since our main focus is the analysis of the more recent

period of 850 to 2014, for which these orbital variables show smooth linear trends. Moreover,

motivated by the work of Blazsek and Escribano (2022), we also omit the following explanatory

variables: (i) the variations in the Sun’s radiation output, (ii) volcanic eruption particles in the

atmosphere and ice cover, and (iii) changes in the Earth’s magnetic poles.

2.2. Short-run climate data

The short-run climate data, with an annual observation frequency, are for the period of 850 to

2014, for which we use global sea ice volume Icet and Antarctic land surface temperature Tempt,

obtained from the GCMI MRI-ESM2.0 (Meteorological Research Institute Earth System Model

Version 2.0), because of its high temporal resolution. The data are from GCM MRI-ESM2.0

(Yukimoto et al., 2019, 2020), which is disseminated by CMIP6 (Eyring et al., 2016) that is

part of the Paleoclimate Modelling Intercomparison Project, Phase 4 (PMIP4; Jungclaus et al.,

2017). In the case of the MRI-ESM2.0, the experiment r1i1p1f1 was used. We also use data on

atmospheric CO2 concentration for the same period, to cluster the Icet and Tempt time series

into sub-periods. The source of the CO2,t data is the work of Meinshausen et al. (2017). We

note that 2014 is the most recent date for which historical annual climate data are available for

us. We use these data sources for Icet, Tempt, and CO2,t, because these are the only sources

from which annual data for the period of 850 to 2014 are available for us.
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Three comments about the short-run dataset: (i) Although according to the Supplementary

Material of Docquier and Koenigk (2021), GCM MRI-ESM2.0 is not among the GCMs which

performed the best at simulating Arctic sea ice trends, we use this GCM due to the availability

of global ice volume data for the last 1 thousand years in MRI-ESM2.0. In the work of Jungclaus

et al. (2017), methods were applied to the ‘past1000’ simulation results for the period of 850 to

1849, and the historical simulation results for the period of 1850 to 2014. GHG concentrations for

the ‘past1000’ are consistent with the historical CMIP6 simulations, and are also consistent with

observations (Jungclaus et al., 2017). (ii) Jungclaus et al. (2017) note that during the second

half of the 9th century, there was a relatively calm climate period when no glaring changes

occurred to the natural constraints, e.g., regarding volcanism and solar activity, it is also quite

far from the medieval climate anomaly (MCA) between 950 and 1250. This motivates the start

year of the second sample of the present paper. (iii) The GHG concentration data of this paper

is a standard dataset, which is part of input4MIPs (input datasets for Model Intercomparison

Projects) (see at the following website: https://esgf-node.llnl.gov/projects/input4mips/), that

serves as input for all GCMs in CMIP6 in the literature.

2.3. Scaling of climate variables, descriptive analysis

We combine the long-run and short-run climate datasets of Table 1(a)-(b), respectively, by

scaling the measures of the shot-run climate variables of Table 1(b) to the measures of the

long-run climate variables of Table 1(a). Scaling for one of the variables is done as follows. We

denote global ice volume from 798 to 1 thousand years ago by ˜Icet and we denote global ice

volume from 1014 to 2014 by Ice∗t . Then, we scale global ice volume Ice∗t for t = 1014, . . . , 2014,

by using Ice∗1014 × ( ˜Ice1014/Ice
∗
1014). Hence, we use the same measurements in Table 1(a)-(b).

In Table 1(a), Icet, Tempt, and CO2,t for the long-run climate data are presented. This table

shows the definitions of variables, observation period, units of measurement, data sources, and

some descriptive statistics for each variable. An important descriptive statistic is the Jarque–

Bera test (Jarque and Bera, 1980) of normal distribution under H0, for which the null hypothesis
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of normal distribution of each dependent variable is rejected at the 1% level of significance.

In Table 1(b), Icet, Tempt, and CO2,t for the short-run climate data are presented. This table

shows the definitions of variables, observation period, units of measurement, data sources, and

some descriptive statistics for each variable. We also present the Jarque–Bera test, for which the

null hypothesis of normal distribution of Icet and CO2,t is rejected at the 1% level of significance.

Moreover, in Fig. 1, we present the evolution of Icet, Tempt, and CO2,t for the period of 798

thousand years ago to the year 2014. In Fig. 2, we present the evolution and forecasts of Icet

and Tempt for the period of 798 thousand years ago to the year 2114, as we forecast Icet and

Tempt using the score-driven threshold climate model in this paper. In Fig. 3, we present the

evolution of Icet, Tempt, and CO2,t for the period of 850 to 2014.

Finally, in Fig. 4(a)-(b), we present the evolution of Icet and Tempt and their smoothed

signals, i.e., E(Icet|Ice1, . . . , IceT ) and E(Tempt|Temp1, . . . ,TempT ), respectively, from 850 to

2014. The smoothed signals are estimated by using the score-driven methods of Blazsek, Ayala,

and Licht (2022), by using the following score-driven quasi-autoregressive (QAR) model:

yt = µt = exp(λ)ϵt (1)

µt = ϕµt−1 + ψut−1 (2)

ut =
ν exp(λ)ϵt
ν + ϵ2t

(3)

where yt is either Icet or Tempt, and ϵt ∼ t(ν) is an i.i.d. error term. The parameter estimates

and model diagnostics for this model are presented in Table 1(c)-(d), respectively.

Figs. 1, 2, 3, and 4(a)-(b) indicate the significant influence of humanity on Icet and CO2,t.

In particular, Figs. 1(a) and 1(c) show the significant influence of humanity on Icet and CO2,t,

respectively, by showing the significant recent decrease in Icet and increase in CO2,t, respectively.

A similar decreasing effect on Icet is shown in Fig. 2(a). Furthermore, Figs. 3(a) and 3(c) also

show the significant negative and positive influence of humanity on Icet and CO2,t, respectively.

Finally, we also highlight the negative effect of humanity on Icet in Fig. 4(a).

8



3. Methods

In this section, we present the clustering methods that we use to identify structural changes in

climate variables, and we also present the score-driven threshold climate model.

3.1. Clustering of climate variables

We cluster Icet and Tempt by using CO2,t with Ward’s linkage clustering method (Ward, 1963).

The use of Ward’s clustering method to specify the score-driven threshold climate model is mo-

tivated by the resulting impressive forecasting performance for climate variables, as shown in

the work of Blazsek and Escribano (2023). Many of the standard clustering methods are special

cases of this general clustering method. Ward’s clustering method identifies the different histor-

ical periods of abrupt climate changes (periods of structural changes). For Ward’s clustering,

we initially set the final number of groups we would like to create. In this paper, using CO2,t

observations, we studied the performances of 2 to 5 groups. Initial statistical analysis suggested

that clustering to 3 groups is superior to the alternatives for the period of 850 to 2014.

Ward’s linkage clustering method is an agglomerative (i.e., bottom-up) hierarchical clustering

method, which begins with each observation being considered as a separate group (i.e., T groups

each of size 1). Then, the closest two groups are combined (i.e., T − 1 groups, one of size 2

and the rest of size 1). To decide which clusters should be combined, a measure of dissimilarity

(i.e., linkage criterion) between sets of observations is required. Ward suggested that the linkage

criterion for choosing the pair of clusters to merge at each step is based on the optimal value of

an objective function. Ward’s method joins the two groups that result in the minimum increase

in the error sum of squares (ESS). It can be interpreted as forming hierarchical combinations of

pairs of clusters that minimize the increase in information loss, as measured by an increase in

ESS, at each step (Everitt, 1993). This process creates a hierarchy of clusters, and it continues

until all observations belong to the same group. In the chosen clustering procedure, we stop

the process of combination of groups when all observations belong to 3 groups, which are the

periods of (i) 850 to 1906, (ii) 1907 to 1979, and (iii) 1980 to 2014.
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3.2. Score-driven threshold climate model

We start with a brief review of score-driven models. Score-driven time series models are intro-

duced in the works of Creal, Koopman, and Lucas (2008) and Harvey and Chakravarty (2008).

Those authors name the score-driven models generalized autoregressive score (GAS) and dy-

namic conditional score (DCS) models, respectively. Score-driven models are observation-driven

time series models (Cox, 1981), in which the filters are updated using the scaled conditional

score functions of the log-likelihood (LL) of the dependent variables. Score-driven models are

estimated by using the maximum likelihood (ML) method (Harvey, 2013; Blasques et al., 2022).

Some of the statistical advantages of the score-driven models are the following. (i) The updat-

ing mechanisms of those models are generalizations of those of the classical time series models,

e.g., ARMA (autoregressive moving average) (Box and Jenkins, 1970), GARCH (generalized au-

toregressive conditional heteroskedasticity) (Engle, 1982; Bollerslev, 1986), and VARMA (vector

ARMA) (Tiao and Tsay, 1989). (ii) Score-driven models are robust to outliers (Harvey, 2013;

Blazsek and Escribano, 2016a, 2016b, 2022; Ayala, Blazsek, and Escribano, 2022). (iii) A

score-driven update locally reduces the Kullback–Leibler distance between the true and esti-

mated values of the score-driven filter in every step, and only score-driven models have this

property (Blasques, Koopman, and Lucas, 2015). In other words, score-driven filters use an

information-theoretically optimal updating mechanism. (iv) Score-driven updates also satisfy

stronger optimality properties, based on a global definition of Kullback–Leibler divergence (Lau-

ria, 2021). Score-driven updates reduce the distance between the expected updated parameter

and the pseudo-true parameter. Depending on the conditional density and the scaling of the

score, the optimality result can hold globally over the parameter space (Lauria, 2021).

We note that the linear updating mechanisms of ARMA and VARMA, and the quadratic

updating mechanism of GARCH are optimal from an information-theoretic perspective only

if the data-generating process (DGP) has a normal distribution. According to the descriptive

statistics, the DGPs of climate variables are not normal distributions (Table 1), and there are

important shifts in the levels of those variables (Figs. 1 to 4(a)-(b)) which indicate the presence
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of outliers in the dataset. Therefore, advantages (i) to (iv) may imply improvements in statistical

inferences when score-driven models are applied to the climate data.

In the work of Castle and Hendry (2020), estimation and forecasting results are presented

for a general unrestricted model (GUM), named the ice-age model. In the work of Blazsek and

Escribano (2022), the score-driven ice-age model is introduced, and they show that the statistical

performance of their model is superior to that of the ice-age model of Castle and Hendry (2020).

The works of Castle and Hendry (2020) and Blazsek and Escribano (2022) use data for the first

698 thousand years of the sample, for which humanity did not influence the Earth’s climate,

forecast the Antarctic ice volume, atmospheric CO2, and land surface temperature for the last

100 thousand years of the sample. For the last 10 to 15 thousand years, when human activity

could have influenced the Earth’s climate, they find that (i) the forecasts of ice volume are above

the observed ice volume, (ii) the forecasts of the atmospheric CO2 level are below the observed

CO2 level, and (iii) the forecasts of temperature are below the observed temperature.

One possible interpretation of the imprecise climate forecasts of those models is the structural

change in the parameters of the models generated by human activity during the Anthropocene

period. However, if the climate models naturally produce structural changes in the parameters of

the models due to changes in the reactions to the evolution of orbital variables (e.g., eccentricity,

obliquity, and precession), then we cannot only associate those imprecise climate forecasts with

the impact of human activity.

To address this issue, Blazsek and Escribano (2023) model structural changes explicitly, using

ice-age models with time-varying parameters based on clusters formed by threshold values of

CO2,t, Tempt, and Icet for the period of 798 to 1 thousand years ago. Those authors show that,

once we control for all structural changes, the models forecast well out-of-sample during the last

10 to 15 thousand years. Clearly, human activity is one of the main factors generating recent

structural changes in the climate models, but it is not the unique factor over longer periods

(identification problem). The in-sample forecasting performances of the models of Castle and

Hendry (2020) and Blazsek and Escribano (2022) are significantly improved over the last 100
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thousand years, using the training window of 798 to 101 thousand years ago.

The results in the works of Castle and Hendry (2020) and Blazsek and Escribano (2022, 2023)

are based on data with high temporal aggregation. Each observation represents values over 1

thousand years and is not appropriate to evaluate the significant impact of human activity on

climate change since the Industrial Revolution. In the score-driven Markov-switching models of

Blazsek and Escribano (2023), asymmetries generated by periods of high CO2 levels and rapid

increases in CO2 are found. Therefore, in the present paper, we use annual data from 850 to

2014 for a new score-driven threshold climate model. The structural changes are generated

by high increases in the levels of CO2 and estimated using cluster analysis. We identify two

threshold values of CO2 corresponding with the years 1906 and 1979, see Fig. 3(c). For our

dataset, the fast increase in the levels of CO2 is clearly generated by economic growth based

on the increasing use of fossil fuels, with highly concentrated cities of increasing population.

Therefore, in this paper, we solve the previous identification issue of the sources of structural

changes during the Anthropocene. The identification of climate changes is clearer in the short

run because, during a short time span period, the orbital variables are smoothly evolving and

do not strongly affect the parameters of the climate models of temperature and volume of ice.

To find the best score-driven climate specification, we perform an extensive model selection

procedure that starts with using the full specification of the score-driven threshold ice-age model

of Blazsek and Escribano (2023). Model selection is performed using annual data for the period

of 850 to 2014, and we use 2 to 5 alternative numbers of periods for clustering. We start with the

dependent variables yt = (Icet,CO2,t,Tempt)
′. We also consider the first and second differences

of CO2,t as alternatives. Nevertheless, due to the explosive and exponentially upward trending

behavior of CO2,t, we decided to use CO2,t as a clustering variable. Therefore, the score-driven

threshold climate model reported in this paper is specified for yt = (Icet,Tempt)
′ as follows:

yt = δt + µt + vt (4)
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δt = α(1)D1,t + β(1)T1,t + α(2)D2,t + β(2)T2,t + α(3)D3,t + β(3)T3,t (5)

µt = [Γ(1)D1,t + Γ(2)D2,t + Γ(3)D3,t]µt−1 + [Ψ(1)D1,t +Ψ(2)D2,t +Ψ(3)D3,t]ut−1 (6)

vt ∼ t3[0,Ω(1)Ω(1)
′D1,t + Ω(2)Ω(2)′D2,t + Ω(3)Ω(3)′D3,t, ν] (7)

for t = 1, . . . , T . The conditional mean of yt, conditional on Ft = (y1, . . . , yt−1, µ1) is (δt + µt).

The reduced-form error term for sub-period i = 1, 2, 3 is vt ∼ t2[0,Σ(i), ν] with a bivariate i.i.d.

t-distribution (t2 indicates two-dimensional t-distribution), where the scale matrix is Σ(i) ≡

Ω(i)Ω′(i) (2 × 2), for which Ω(i) (2 × 2) is a lower-triangular squared matrix with positive

elements in the diagonal, and ν > 0 is the degrees of freedom parameter. We note that the

use of the common degrees of freedom parameter for the three sub-periods is due to the results

of the aforementioned model selection procedure. The remaining parameters are specified as

follows: α(i) and β(i) for i = 1, 2, 3 are 2 × 1 vectors; Γ(i) and Ψ(i) for i = 1, 2, 3 are 2 × 2

diagonal matrices. We also note that the use of the diagonal Γ(i) and Ψ(i) is also due to the

results of the aforementioned model selection procedure.

The linear time trend with structural changes is modeled as follows: D1,t = 1 for t ≤ T1B

and zero otherwise, D2,t = 1 for T1B < t ≤ T2B and zero otherwise, D3,t = 1 for t > T2B and

zero otherwise, T1,t = t for t ≤ T1B and zero otherwise, T2,t = t − T1,t for T1B < t ≤ T2B and

zero otherwise, and T3,t = t−T2,t for t > T2B and zero otherwise. In these definitions, the dates

of structural changes, T1B and T2B, are determined using Ward’s linkage clustering method for

CO2,t. In our empirical application, we find that T1B = 1906 and T2B = 1979.

The 2× 1 scaled score function ut is defined as follows. The log conditional density of yt is:

ln f(yt|Ft−1; Θ) = ln Γ

(
ν + 2

2

)
−ln Γ

(ν
2

)
−ln(πν)−1

2
ln |Σ(i)|−ν + 2

2
ln

[
1 +

v′tΣ(i)
−1vt

ν

]
(8)

where vt = yt−δt−µt, Θ = (Θ1, . . . ,ΘS)
′ is the vector of time-invariant parameters. The partial
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derivative of the log conditional density ln f(yt|Ft−1; Θ) with respect to (δt + µt) is:

∂ ln f(yt|Ft−1; Θ)

∂(δt + µt)
=
ν + 2

ν
Σ(i)−1 ×

(
1 +

v′tΣ(i)
−1vt

ν

)−1

vt ≡
ν + 2

ν
Σ(i)−1 × ut (9)

The scaled score function ut is defined in the second equality of Equation (9), where vt is

multiplied by {1 + [v′tΣ(i)
−1vt]/ν}−1 = ν/[ν + v′tΣ(i)

−1vt] ∈ (0, 1). Hence, the scaled score

function is bounded by the reduced-form error term: |ut| < |vt|. All elements of ut are bounded

functions of vt for ν <∞ (Harvey, 2013), and all moments of ut are well-defined. In the work of

Harvey (2013), it is shown that ut is multivariate i.i.d. with mean zero and a covariance matrix:

Var(ut) = E

[
∂ ln f(yt|Ft−1; Θ)

∂µt
× ∂ ln f(yt|Ft−1; Θ)

∂µ′
t

]
=
ν + 2

ν + 4
× Σ(i)−1 (10)

for the climate sub-periods i = 1, 2, 3.

Finally, the variance of the reduced-form error term is factorized, as follows:

Var(vt) = Σ(i)× ν

ν − 2
=

(
ν

ν − 2

)1/2

× Ω(i)Ω′(i)×
(

ν

ν − 2

)1/2

(11)

Based on that, the following multivariate i.i.d. structural-form error term ϵt is introduced:

vt =

(
ν

ν − 2

)1/2

Ω(i)× ϵt (12)

where E(ϵt) = 0, Var(ϵt) = I2 and ϵt ∼ t2[0, I2 × (ν − 2)/ν, ν]. In Fig. 5, we present ut as a

function of the structural-form error term ϵt for the most recent sub-period of 1980 to 2014.

The figure presents ut for the estimates for the score-driven threshold climate model. In the

three-dimensional graphs of Fig. 5, we present the elements of ut as functions of ϵ1,t and ϵ2,t.

In each panel of Fig. 5, maximum and minimum points can be observed for ut as a function of

ϵt, which are by the result that ut converges in probability to zero as any of its arguments ϵt go

to infinity, i.e., extreme values of ϵt are discounted by ut. Therefore, Fig. 5 indicates that the
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score-driven threshold climate model is robust to extreme observations.

We estimate the score-driven threshold climate model for the climate data in two steps. In

the first step, we estimate the parameters of the linear trend model with structural changes, i.e.,

α(i) and βi for i = 1, 2, 3, by using the OLS-HAC (ordinary least squares; heteroskedasticity and

autocorrelation consistent) method (Newey and West, 1987). We substitute those parameter

estimates for the second step, in which the remaining parameters are estimated by using the

ML method (Harvey, 2013; Blasques et al., 2022).

We note that for in-sample forecasting analysis, involving reduced estimation windows, we

also use climate models for the period of 850 to 1979 with one structural change in 1906.

4. Empirical results

In this section, we summarize the empirical results for the score-driven threshold climate model.

In Table 2(a), we present the parameter estimates for the linear trend model with structural

changes. In Table 2(b), we present the parameter estimates and model diagnostics for the score-

driven threshold climate model. Concerning model diagnostics, all statistics support the use of

the score-driven threshold climate specification. (i) The maximum modulus of the eigenvalues

of Γ(i) for i = 1, 2, 3, denoted by C(i) in Table 2(b), indicate that the score-driven filter µt is

asymptotically covariance stationary. In Fig. 4(c)-(d), we present the estimates of µt. (ii) The

Escanciano–Lobato test (Escanciano and Lobato, 2009) suggests that the structural-form errors,

v1,t and v2,t, are martingale difference sequences (MDS). The same test also suggests that the

scaled score functions, u1,t and u2,t, are MDS. (iii) The Ljung–Box test (Ljung and Box, 1978)

suggests that the structural-form errors, v1,t and v2,t, are independent time series. The same

test also suggests that the scaled score functions, u1,t and u2,t, are independent time series. In

Fig. 6, we present the estimates of vt and ut.

In Fig. 7, we study the in-sample forecasts of Icet and Tempt for the period of 1980 to 2014.

For the forecasting period 1980 to 2014 (Fig. 7(a)-(b)), we use a score-driven climate model with

one structural change in the year 1906, which defines the periods 850 to 1906 and 1907 to 1979.
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In this way, we approximate what would have happened with the evolution of Icet and Tempt,

if GHG emissions would not have increased further. The corresponding parameter estimates

and model diagnostics are presented in Table 3, in which the model diagnostics support the

specification of the score-driven climate model with one structural change. In Fig. 7(a), the

lower bound of Icet forecasts is higher than the observed value of Icet after 2001. Moreover, in

Fig. 7(b), the upper bound of Tempt tends to be lower than the observed value of Tempt from

the mid-1990s. According to these results, Icet would not disappear in the forthcoming decades.

Using the estimates of the score-driven threshold climate model, we perform out-of-sample

forecasting from 2015 to 2114. In Fig. 8(a)-(b), we present the evolution and forecasts of Icet

and Tempt, respectively, for the period of 850 to 2114. In Fig. 8(c)-(d), we present the evolution

and forecasts of Icet and Tempt, respectively, for the period of 1980 to 2114. Fig. 8 indicates that

if the current trend of climate change continues, then all global sea ice will disappear around the

year 2077, and the corresponding mean± 2 standard deviation interval forecast is [2067, 2088].

5. Discussion

In the work of Blazsek and Escribano (2022), a time series model, named the score-driven ice-

age model, is introduced. Recently, the statistical modeling of climate variables has remained

popular in the field of climatology. For example, Ahn et al. (2022) use autoregressive moving

average (ARIMA) models to examine sea ice concentration in the region of the Barents and Kara

Seas. Wu et al. (2023) use ARIMA models to analyze and forecast the sea ice concentration

along a shipping route in the Northern Sea. Brennan et al. (2023) use linear inverse models

(LIMs) to predict, among others, Arctic sea ice concentration and thickness.

The statistical modeling of climate variables, which is performed in the present paper, has

gained popularity since statistical models are computationally less expensive compared to the

dynamic models, i.e. GCMs, which require a significant amount of data (Wu et al., 2023).

Moreover, based on the analysis of Stroeve et al. (2014), the forecasting performance of statis-

tical models is slightly higher than the forecasting performance of dynamic models (Blanchard-
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Wrigglesworth et al., 2017; Brennan et al., 2023). The uncertainty and initial conditions of

dynamic models are partly responsible for that (Blanchard-Wrigglesworth et al., 2015, 2017).

Andersson et al. (2021) introduce a deep learning-based Arctic sea ice forecasting system, which

also outperforms a state-of-the-art dynamic model. Furthermore, temporally varying relation-

ships between climate variables and climate factors can also be examined through statistical

modeling (Ahn et al., 2014).

It is shown that the statistical performance of the score-driven ice-age model is superior

to the statistical performance of the ice-age model of Castle and Hendry (2020). Blazsek and

Escribano (2022) also show that the forecasting performances of both models are similar and not

very effective for the climate variables for the Anthropocene. Motivated by that result, Blazsek

and Escribano (2023) introduce the score-driven threshold ice-age model. Those authors use

the same data for climate and orbital variables for the last 798-thousand-year period as Castle

and Hendry (2020) and Blazsek and Escribano (2022), and they forecast global ice volume,

atmospheric CO2, and Antarctic land surface temperature for the last 100,000 years of the

sample (i.e., in-sample forecasts) and the forthcoming 5,000 years (i.e., out-of-sample forecasts).

Blazsek and Escribano (2023) use Ward’s linkage clustering procedure (Ward, 1963), to define

sub-periods of climate change. The score-driven threshold ice-age model improves the forecasting

performances of the models of Castle and Hendry (2020) and Blazsek and Escribano (2022).

Nevertheless, Blazsek and Escribano (2023) use 1-thousand-year frequency observations, which

does not allow the measurement of climate effects of humanity for the last 250 years with

unprecedented high levels of CO2,t and Tempt, and unprecedented low levels of Icet.

The results of the present paper suggest that the proposed score-driven climate model is

suitable for forecasting the evolution of global sea ice volume.

6. Conclusions

In this paper, we have used a novel climate time series specification, named the score-driven

threshold climate model. As an example, we presented its usage, and interval forecasts of global
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sea ice volume until the year 2114, to study the first date of ice-free Oceans on Earth. There is

significant literature on sea ice forecasts for the Arctic Ocean, using a variety of climate models

for CMIP3, CMIP5, and CMIP6, which suggest diverse forecasts for the first date of an ice-free

Arctic Ocean. The advantage of using the novel time series model in comparison with the future

simulations of GCMs is that it enables us to predict the future based on the assumption that

the current trend of climate change continues, while its estimation is more straightforward and

less expensive than that of the GCMs. Furthermore, it can be used for statistical downscaling.

The score-driven threshold climate model can be used to define sub-periods of climate change.

We have combined long-run 1-thousand-year frequency climate data for the period of 798 to 1

thousand years ago and short-run annual data from 850 to 2014, by scaling the short-run climate

data. We have compared the evolution of long-run and short-run climate data using descriptive

statistical analysis. We have reported estimations for the period of 850 to 2014 for global

sea ice volume Icet and Antarctic land surface temperature Tempt, for which we have used the

atmospheric CO2,t concentration as a clustering variable. We have performed an extensive model

selection procedure, to find the optimal score-driven model specification. For the score-driven

threshold climate model, we have used Ward’s clustering with the clustering variable CO2,t,

which has defined 3 sub-periods of climate change for Icet and Tempt: (i) 850 to 1906, (ii) 1907

to 1979, and (iii) 1980 to 2014. We have estimated the model for the dependent variables Icet

and Tempt, and we have reported out-of-sample interval forecasts for the period of 2015 to 2114.

We have presented interval forecasts of global sea ice volume until the year 2114, to study the

first date of ice-free Oceans on Earth. There is significant literature on sea ice forecasts for the

Arctic Ocean, using a variety of GCMs for CMIP3, CMIP5, and CMIP6, which suggest diverse

forecasts for the first date of an ice-free Arctic Ocean. We have taken a global perspective

on sea ice forecasting, and we have used a novel climate time series specification, named the

score-driven threshold climate model. The advantage of using the novel time series model in

comparison with the future simulations of GCMs is that it enables us to predict the future based

on the assumption that the current trend of climate change continues, while its estimation is
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more straightforward and less expensive than that of the GCMs.

For the in-sample forecasts from 1980 to 2014, we estimated our score-driven threshold

climate model with one structural change for the period of 850 to 1979. The in-sample multi-step

ahead forecasts predict decreasing values of ice volume but still within the 95% confidence bands

until the early 2000 years. However, after the early 2000 years, the ice-volume forecast continued

to decrease, and since then the values of the ice volume are outside the 95% confidence band,

indicating that things are getting worse year after year, generating an extra climate structural

change. This is supported by our out-of-sample forecasts. Similar results are obtained for

temperature. Apart from a few years, our in-sample predictions from 1980 to 2014 detect

higher temperature values than the 95% confidence band of the model, and even after the late

1970s, the temperature was almost always higher than the temperature forecast, indicating

that the structural changes in the model of temperature are still present after 1980, which

is consistent with the global warming generated by GHG. This is also supported by our out-

of-sample temperature forecasts. We have found that if the current trend of climate change

continues, then global sea ice will disappear around 2077 with a mean ± 2 standard deviation

interval forecast [2067, 2088].
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Table 2. In-sample estimates for the linear trend and score-driven climate models with two structural changes from 850 to 2014.

(a). Parameter estimates for linear trend model with two structural changes

Global sea ice volume Icet Antarctic-based land surface temperature Tempt

α(1) 3.2204∗∗∗(0.0330) α(1) −0.4251∗∗∗(0.0005)

β(1) 0.0002∗∗(0.0001) β(1) 0.0000(0.0000)

α(2) 3.6281∗∗∗(0.1048) α(2) −0.4335∗∗∗(0.0019)

β(2) 0.0014(0.0028) β(2) 0.0001∗∗∗(0.0000)

α(3) 4.0599∗∗∗(0.0258) α(3) −0.4236∗∗∗(0.0027)

β(3) −0.0418∗∗∗(0.0019) β(3) 0.0001(0.0001)

(b). Score-driven threshold climate model with two structural changes for Icet and Tempt
Parameter estimates Model diagnostics

Γ1,1(1) 0.8028∗∗∗(0.0200) LL 4.2570

Γ2,2(1) 0.8693∗∗∗(0.0404) AIC −8.4727

Γ1,1(2) 0.7314∗∗∗(0.0970) BIC −8.3684

Γ2,2(2) 0.4576(0.4219) HQC −8.4334

Γ1,1(3) 0.2104(0.2816) Covariance stationarity

Γ2,2(3) −0.3505(0.2571) C(1) 0.8693

Ψ1,1(1) 1.0066∗∗∗(0.0400) C(2) 0.7314

Ψ2,2(1) 0.1599∗∗∗(0.0252) C(3) 0.3505

Ψ1,1(2) 1.0860∗∗∗(0.1145) Escanciano–Lobato test (p-value)

Ψ2,2(2) 0.2202∗(0.1312) v1,t 0.8955(0.3440)

Ψ1,1(3) 0.6841∗∗∗(0.1991) v2,t 1.7112(0.1908)

Ψ2,2(3) 0.5921∗∗∗(0.1929) u1,t 0.7386(0.3901)

Ω1,1(1) 0.1325∗∗∗(0.0028) u2,t 1.6991(0.1924)

Ω1,2(1) −0.0012∗∗∗(0.0002) Ljung–Box test (p-value)

Ω2,2(1) 0.0061∗∗∗(0.0001) v1,t 34.9696(0.4218)

Ω1,1(2) 0.1354∗∗∗(0.0128) v2,t 27.5782(0.7739)

Ω1,2(2) 0.0004(0.0011) u1,t 35.8501(0.3817)

Ω2,2(2) 0.0067∗∗∗(0.0007) u2,t 28.0749(0.7527)

Ω1,1(3) 0.0826∗∗∗(0.0131)

Ω1,2(3) 0.0008(0.0020)

Ω2,2(3) 0.0060∗∗∗(0.0011)

ν 75.8342∗∗∗(27.7938)

µ1,0 0.2613(1.0451)

µ2,0 0.0003(0.0039)

Notes: Log-likelihood (LL); Akaike information criterion (AIC); Bayesian information criterion (BIC); Hannan–Quinn criterion

(HQC). Ci < 1 indicates covariance stationarity for sub-period i, where i = 1, 2, 3 indicate the periods of 850 to 1906, 1907 to 1979,

and 1980 to 2014, respectively. For the parameter estimates in (a) and (b), standard errors are in parentheses. The Escanciano–

Lobato and Ljung–Box (LB) statistics (p-values are in parentheses) use the lag-order
√
T . For the linear trend model with two

structural changes, we present OLS-HAC (ordinary least squares; heteroskedasticity and autocorrelation consistent) standard errors.

For the score-driven climate model, we present inverse-information matrix-based standard errors. ∗, ∗∗, and ∗∗∗ indicate parameter

significance at the 10%, 5%, and 1% levels, respectively.
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Table 3. In-sample estimates for the linear trend and score-driven climate models with one structural change from 850 to 1979.

(a). Parameter estimates for linear trend model with one structural change

Global ice volume Icet Antarctic-based land surface temperature Tempt

α(1) 3.2204∗∗∗(0.0330) α(1) −0.4251∗∗∗(0.0005)

β(1) 0.0002∗∗∗(0.0001) β(1) 0.0000∗∗∗(0.0000)

α(2) 3.6281∗∗(0.1048) α(2) −0.4335(0.0019)

β(2) 0.0014(0.0028) β(2) 0.0001∗∗∗(0.0000)

(b). Score-driven threshold climate model with one structural change for Icet and Tempt
Parameter estimates Model diagnostics

Γ1,1(1) 0.8028∗∗∗(0.0200) LL 4.2415

Γ2,2(1) 0.8692∗∗∗(0.0404) AIC −8.4529

Γ1,1(2) 0.7301∗∗∗(0.0973) BIC −8.3772

Γ2,2(2) 0.4560(0.4330) HQC −8.4243

Ψ1,1(1) 1.0100∗∗∗(0.0403) Covariance stationarity

Ψ2,2(1) 0.1604∗∗∗(0.0253) C(1) 0.8692

Ψ1,1(2) 1.0866∗∗∗(0.1150) C(2) 0.7301

Ψ2,2(2) 0.2111(0.1353) Escanciano–Lobato test (p-value)

Ω1,1(1) 0.1324∗∗∗(0.0029) v1,t 0.8783(0.3487)

Ω1,2(1) −0.0012∗∗∗(0.0002) v2,t 1.8490(0.1739)

Ω2,2(1) 0.0061∗∗∗(0.0001) u1,t 0.6986(0.4033)

Ω1,1(2) 0.1353∗∗∗(0.0128) u2,t 1.8339(0.1757)

Ω1,2(2) 0.0004(0.0011) Ljung–Box test (p-value)

Ω2,2(2) 0.0067∗∗∗(0.0007) v1,t 35.0196(0.4195)

ν 71.3960∗∗∗(25.2246) v2,t 27.7886(0.7650)

µ1,0 0.2621(1.0115) u1,t 35.9678(0.3765)

µ2,0 0.0004(0.0039) u2,t 28.3486(0.7406)

Notes: Log-likelihood (LL); Akaike information criterion (AIC); Bayesian information criterion (BIC); Hannan–Quinn criterion

(HQC). Ci < 1 indicates covariance stationarity for sub-period i, where i = 1, 2 indicate the periods of 850 to 1906 and 1907 to

1979, respectively. For the parameter estimates, standard errors are in parentheses. The Escanciano–Lobato and Ljung–Box (LB)

statistics (p-values are in parentheses) use the lag-order
√
T . For the linear trend model with one structural change, we present

OLS-HAC (ordinary least squares; heteroskedasticity and autocorrelation consistent) standard errors. For the score-driven climate

model, we present inverse-information matrix-based standard errors. ∗∗ and ∗∗∗ indicate parameter significance at the 5% and 1%

levels, respectively.
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(a). Global sea ice volume Icet from 798 thousand years ago to the year 2014.
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(b). Antarctic-based land surface temperature Tempt from 798 thousand years ago to the year 2014.
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(c). Atmospheric CO2 concentration CO2,t from 798 thousand years ago to the year 2014.
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Fig. 1. Evolution of Icet, Tempt, and CO2,t from 798 thousand years ago to 2014. Notes: On the x-axis, 1 unit = 1 thousand

years. On the y-axis, (a) is based on the δ18O proxy; (b) is 1 unit = 1 ◦C; (c) is 1 unit = 780 gigatonnes of CO2. Source of data:

Lisiecki and Raymo (2005), Jouzel et al. (2007), Lüthi et al. (2008), Yukimoto et al. (2019, 2020), and Meinshausen et al. (2017).
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(a). Global sea ice volume Icet from 798 thousand years ago to the year 2114.
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(b). Antarctic-based land surface temperature Tempt from 798 thousand years ago to the year 2114.
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Fig. 2. Evolution and forecasts of Icet and Tempt from 798 thousand years ago to the year 2114. Notes: For the period of 2015 to

2114, we use the forecasts of the score-driven climate model of the present paper. On the x-axis, 1 unit = 1 thousand years. On the

y-axis, (a) is based on the δ18O proxy; (b) is 1 unit = 1 ◦C. Source of data: Lisiecki and Raymo (2005), Jouzel et al. (2007), Lüthi

et al. (2008), Yukimoto et al. (2019, 2020), and Meinshausen et al. (2017).
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(a). Global sea ice volume Icet for the period of 850 to 2014.
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(b). Antarctic-based land surface temperature Tempt for the period of 850 to 2014.
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(c). Atmospheric CO2 concentration CO2,t for the period of 850 to 2014.
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Fig. 3. Evolution of Icet, Tempt, and CO2,t for the period of 850 to 2014. Notes: On the x-axis, 1 unit = 1 year. On the y-axis,

(a) is based on the δ18O proxy; (b) is 1 unit = 1 ◦C; (c) is 1 unit = 780 gigatonnes of CO2. The vertical lines in Fig. 3(c) indicate

the period breakpoints 1906 and 1979. Source of data: Yukimoto et al. (2019, 2020) and Meinshausen et al. (2017).
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(a). Global sea ice volume (black) and its smoothed estimate (red) for the period of 850 to 2014.
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(b). Antarctic-based land surface temperature (black) and its smoothed estimate (red) for the period of 850 to 2014.
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(c). µIce,t, score-driven filter for global sea ice volume for the period of 850 to 2014.
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(d). µTemp,t score-driven filter for Antarctic-based land surface temperature for the period of 850 to 2014.
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Fig. 4. Evolution of Icet, Tempt, their smoothed estimates and evolution of µIce,t and µTemp,t for the period of 850 to 2014. Notes:

On the x-axis, 1 unit = 1 year. On the y-axis, (a) is based on the δ18O proxy; (b) is 1 unit = 1 ◦C. Source of data: Lisiecki and

Raymo (2005), Jouzel et al. (2007), Lüthi et al. (2008), Yukimoto et al. (2019, 2020), and Meinshausen et al. (2017).
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(a). u1,t as a function of ϵ1,t and ϵ2,t.

(b). u2,t as a function of ϵ1,t and ϵ2,t.

Fig. 5. Robustness of the scaled score function to extreme values. Notes: We present the estimates of the scaled score functions

from 1980 to 2014. Notice the significant discounting of the extreme observations, even though the degrees of freedom parameter is

relatively high, ν = 75.8342.
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(a). Error term vIce,t (black) and scaled score function uIce,t (red) for the period of 850 to 2014.
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(a). Error term vTemp,t (black) and scaled score function uTemp,t (red) for the period of 850 to 2014.
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Fig. 6. Error terms vIce,t and vTemp,t and scaled score functions uIce,t, and uTemp,t for the period of 850 to 2014.

Notes: On the x-axis, 1 unit = 1 year. On the y-axis, (a) is based on the δ18O proxy; (b) is 1 unit = 1 ◦C.
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(a). Global sea ice volume for the period of 1980 to 2014.
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(b). Antarctic-based land surface temperature for the period of 1980 to 2014.
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Fig. 7. Evolution and in-sample forecasts of Icet and Tempt for the period of 1980 to 2014. Notes: For the in-sample forecasts,

we use the one-regime and two-regime score-driven climate models of the present paper. The interval forecasts correspond to ±2σ

around the mean. On the x-axis, 1 unit = 1 year. On the y-axis, (a) is based on the δ18O proxy; (b) is 1 unit = 1 ◦C. Source of

data: Yukimoto et al. (2019, 2020) and Meinshausen et al. (2017).
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(a). Global sea ice volume for the period of 850 to 2114.
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(b). Antarctic-based land surface temperature for the period of 850 to 2114.
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(c). Global sea ice volume for the period of 1980 to 2114.
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(d). Antarctic-based land surface temperature for the period of 1980 to 2114.
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Fig. 8. Evolution and out-of-sample forecasts of Icet and Tempt for the periods of 850 to 2114 and 1980 to 2114. Notes: For the

period of 2015 to 2114, we use the forecasts of the score-driven climate model of the present paper. The interval forecasts correspond

to ±2σ around the mean. On the x-axis, 1 unit = 1 year. On the y-axis, (a) and (c) are based on the δ18O proxy; (b) and (d) are 1

unit = 1 ◦C. Source of data: Yukimoto et al. (2019, 2020) and Meinshausen et al. (2017).
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