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1 Introduction

Transition risk from climate change mitigation policy is highly dependent on

sector. Firms in certain sectors, such as those that burn fossil fuels directly,

are inherently more exposed to policies such as carbon taxes or emissions cap

and trade programs due to expenditures on offsets or taxes on their direct

emissions.1

However, these directly emitting sectors typically form a relatively small

portion of total output in advanced economies, which are instead dominated

by lower emissions sectors such as the service sector. Figure 1 shows that over

90% of emissions in the US originate in sectors that constitute less than 25%

of output. Even if an industry does not directly emit, this does not preclude

its exposure to transition risk from climate change policies or imply that the

sector is “climate-friendly” in any sense. Indeed, many low-emissions sec-

tors are highly dependent on energy generated by burning fossil fuels. They

could also be located upstream from emitting industries, supplying interme-

diate goods to sectors that would potentially shrink from a carbon tax. A

prominent example would be coal mining in its relationship to electricity

production from coal-fired power plants. This would also subject them to

transition risk, as seen in the loss of employment in coal mining regions when

these power plants shut down.

Consequently, a concept known as scope 3 emissions was developed, which

refers to indirect emissions of a company or other entity along the entire

length of their supply chain (both upstream and downstream). This contrasts

with scope 1 emissions which refer only to direct fossil fuel burning and scope

2 emissions which refer only to emissions associated with immediate energy

inputs. Many climate risk measurement exercises, such as those conducted

at the Dutch Central Bank or European Central Bank, or prominent vendors

1This would similarly apply to a reduction in fossil fuel subsidies, prevalent throughout
the world, which would map directly to carbon taxes. See Skovgaard and Van Asselt
(2018) for context.
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Figure 1: USA data.
Source: EXIOBASE 3, based on GWP100 standard of greenhouse gas weight-
ing.

of ESG ratings, use scope 1+2+3 emissions as a major component of their

measure of firm-level vulnerability to transition risk.2

However, the relative importance of the subcomponents of scope 1+2+3

emissions in determining transition risk is less well understood. This involves

developing an understanding of the relative magnitude of indirect supply

chain-related effects as opposed to effects arising from direct carbon taxes in

determining either firm or sector-level transition risk.

A line of literature has started to examine this question, using production

network models of the kind pioneered by Long and Plosser (1983), developed

2See Vermeulen et al. (2021), Battiston et al. (2017), and Alogoskoufis et al. (2021).
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further theoretically in Acemoglu et al. (2012) and Baqaee and Farhi (2019),

and examined empirically in Horvath (2000), Foerster et al. (2011) and Ata-

lay (2017) among others. These papers primarily focus on understanding

the effects of microeconomic shocks on the macroeconomy, but the frame-

work also provides a useful tool to understand the propagation of carbon

taxes. Some notable examples of papers in this realm are Devulder and Li-

sack (2020), Frankovic (2022) and Campiglio et al. (2022) who highlight the

importance of forward and backward linkages from the entire input-output

structure of the economy in determining sectors most at risk.3 This paper

continues in this line of literature, providing an estimate of the direct vs.

indirect impacts of carbon tax propagation on a sector-by-sector basis using

a “Leave One Covariate Out” or “LOCO”-style analysis. It finds that some

highly-impacted sectors are affected almost entirely through indirect factors

rather than a direct carbon tax. In addition to studying these direct vs. in-

direct impacts, this paper also introduces several modeling innovations that

I will expand on next.

A key challenge in modeling the green transition in this framework is

related to the data – the baseline input-output structure of any simulated

economy needs to be calibrated to empirical input-output tables through

sectoral share parameters in intermediate production and final consumption.

However, these are not typically designed with modeling the green transition

in mind. In these cases, key sectors associated with the green transition are

lumped in with typically “dirty” sectors. For example, the World Input-

Output Database (WIOD) that is used to empirically calibrate the models

in Devulder and Lisack (2020), Frankovic (2022) and Campiglio et al. (2022)

is based on the widely used ISIC Rev. 4 sectoral classification scheme.45

However, this scheme, while extremely granular in some dimensions, does

not differentiate between electricity from green sources and fossil fuel sources,

3These are also known as downstream and upstream effects.
4International Standard Industrial Classification
5For more information, see Timmer et al. (2015)
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possibly the most important margin in this use case. This means that the

green transition is only incompletely modeled in this context – its omission

would mean that growth sectors, such as green energy and linked sectors,

are not considered, and other policies such as green subsidies would be more

difficult to capture.6 In addition, estimates of aggregate value-added changes

may be upwardly biased as a lack of substitutable low carbon-tax energy

goods in the model would cause the entire simulated economy to shrink.

This paper solves this omission by using the EXIOBASE multi-regional

environmentally extended input-output tables to calibrate share parameters

and, thus, the baseline input-output structure of the simulated economy.7

These tables were designed to provide a holistic view of the effect of the

global economy on the environment through the entire supply chain. Cru-

cially, the industry breakdown includes a detailed segmentation of the energy

sector, including a differentiation between coal-fired plants, oil-fired plants,

gas-powered plants, as well as all major renewable energy sectors such as

solar photovoltaic, wind, geothermal, and nuclear power. They also provide

an estimate of greenhouse gas emissions for all these industries, along with

a host of other environmental impacts that are not considered in this pa-

per. Using this database allows me to explicitly model the trade-off between

green and fossil fuel energy in the transition to green and more accurately

understand the winners, losers, and aggregate macroeconomic effects from

this shift. In addition, I can explicitly model the impact of green subsidies,

something not yet attempted in the literature. This also provides a link from

the environmental economics literature, leveraging Long and Plosser (1983)-

style models to estimate the sectoral dynamics of the transition, with the

literature on environmentally extended input-output tables that provide a

6For example, this issue was noted in Battiston et al. (2017), motivating their re-
classification of NACE.

7See Stadler et al. (2018). This database is licensed under the Creative Commons
Attribution-ShareAlike 4.0 International license - see https://creativecommons.org/

licenses/by-sa/4.0/. Changes were made by aggregating certain sectors and countries.
Full crosswalk is available in an online appendix upon request.
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holistic, but static view of industry-level environmental impacts.

With the baseline of the model set according to EXIOBASE, including

sufficient granularity between green and non-green sectors, I now turn to

dynamics. The critical factor is in understanding the ease of substitution

to these green goods, both for producers in their use of intermediate goods

and consumers in their consumption of final goods. Once again, the most

material example is in the switch from fossil fuel energy to electricity from

renewable sources – the ease in substitutability between these two industries

in their use as intermediate and final goods would be a key parameter in

determining the ease of the transition to green. If fossil fuel energy is easily

substituted for renewable energy, then we would expect to see a much milder

transition with sharper differences in outcomes between green and non-green

sectors. This is in contrast to a situation where expensive, carbon-taxed

fossil fuels would still need to be used in production due to difficulties in

substitution to green. These considerations have been noted in other papers

addressing transition risk. For example, sectoral input elasticity is listed

as one of four key factors in determining a sector’s transition risk in the

classification scheme introduced in Battiston et al. (2022). However, this

paper is the first to directly produce an estimate of the variability in economic

impacts from this factor at the sector level.

Indeed, Long and Plosser-style production network models like the one

used in this paper provide a valuable framework to examine this problem,

made even more tractable when using functional forms flexible to non-unitary

elasticities of substitution (EOS). Horvath (2000) introduced the use of Con-

stant Elasticity of Substitution (CES) production functions in this framework

when studying the propagation of sectoral shocks, and Devulder and Lisack

(2020) and Campiglio et al. (2022) continue their usage in the context of

carbon tax propagation. In contrast to those papers, by using a sectoral

classification that includes a differentiation between green and non-green en-

ergy sources, I can explicitly examine the effects of varying the elasticity of
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substitution between green and non-green energy on the propagation of the

carbon tax. I find that, corresponding to the intuition, this is key in de-

termining the nature of the transition, with higher substitutability between

energy factors leading to a milder transition on aggregate, but causing a

sharper gradient in the sectoral incidence of the carbon tax. High-emissions

and fossil fuel-linked sectors collapse sharply (15% - 40% declines depending

on EOS and sector), and green energy-linked sectors grow rapidly (5% - 55%

increase depending on EOS) in response to a relatively modest carbon tax of

$25/ton CO2. This variation becomes even greater when assuming the same

level of uncertainty in energy EOS on the consumer side as the producer side.

An additional analysis shows that common methods of approximating

economic measures of transition risk from carbon taxes using emissions-based

metrics such as scope 1, 2, or 3 have varying accuracy and rank-ordering

ability depending on the EOS parameter. The relationship of any emissions-

based factors to economic effects, as captured by the model, is nonlinear, so

linear approximations tend to suffer poor accuracy, except if energy EOS is

low. Scope 1 and 1+2 emissions also tend to have mediocre rank-ordering

ability of economic effects, especially when substitution elasticities are as-

sumed to be high and network dynamics are more complex. However, scope

1+2+3 emissions metrics rank-order negative economic impacts reasonably

well, although they cannot, by definition, capture the positive impacts. These

results provide conditions when certain simplified transition risk identifica-

tion measures are suitable in the absence of complicated production network

models.

A final question I answer is on the transmission of green subsidies through

the economy. Previous studies using production network models have not

adequately addressed this question due to the lack of differentiation between

key green and non-green sectors. Indeed, this is an especially topical question

as recent climate policies in the US have increasingly relied on subsidies to the

clean energy sector rather than economy-wide carbon taxes. This includes
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the Inflation Reduction Act of 2022, which contains $369 billion in emissions-

reducing climate and clean energy provisions at the federal level.8 But, there

are also numerous state and local policies such as clean energy tax credits,

electric vehicle purchase incentives, and renewable energy certificate (REC)

reimbursements.9

Green subsidies, unsurprisingly, have a direct and large effect on increas-

ing real value-added in the renewable energy sector. But, on a per-dollar

transfer basis, they are less effective in shrinking highly-emitting sectors.

This is especially true if energy sources are not highly substitutable. Even if

they are substitutable, large subsidies cannot reduce petroleum and fossil fuel

electricity usage by more than the modest $25/ton CO2 tax studied earlier.

This is due to incomplete pass-through even in the high EOS cases. However,

as this model does not include some essential components in understanding

sectoral dynamics in the long term, such as technological growth and R&D,

this result is likely best interpreted as reflecting short-term effects. This

finding is consistent with the insight in Borenstein (2012) that the imperfect

elasticity between renewables and fossil fuels in generating electricity would

lead to the reduced budgetary efficacy of renewable subsidies compared to

carbon taxes.

The key role green vs. non-green EOS has in both results introduces

a puzzle and potential gap in the literature. Elasticities of substitution

between intermediate goods in final production have been estimated from

typical input-output tables but usually outside the context of the green tran-

sition. Atalay (2017) uses military spending shocks as an instrument to

estimate intermediate good elasticities of substitution and finds that they

are reliably near 0, meaning that goods are, essentially, complements. How-

ever, this result relies on SIC and ISIC categorizations in BEA input-output

tables and the World Input-Output Tables, which do not separate out green

8See Larsen et al. (2022) for an analysis of the Inflation Reduction Act of 2022.
9For an overview of state and local policies within the US, see the DSIRE database

maintained by NC State University - Weissman and Gouchoe (2002).
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energy. Papageorgiou et al. (2017) estimate elasticity parameters in a green

growth context, using fuel-type use information in the World Input-Output

Database to estimate a much higher elasticity of substitution between green

and non-green intermediates - around 2 in the energy sector and 3 in the non-

energy sector. However, the World Input-Output Database has limitations

in the green transition context, and results are acknowledged to have po-

tential endogeneity issues. This paper emphasizes the importance of finding

accurate estimates behind these parameters in determining both aggregate

and sectoral dynamics from transition risk.

The rest of the paper proceeds by introducing the model in section 2,

describing the data, notably, the EXIOBASE tables, in section 3, presenting

results from the simulated model in section 4, followed by a discussion and

conclusion in section 5.

2 Model

2.1 Overview

I estimate a Long and Plosser (1983)-style general equilibrium production

network model, with two countries, USA, and Rest of World or ”ROW.”10

• A representative consumer in each country has rational expectations,

maximizing utility with respect to a consumption basket of differenti-

ated goods and distributing their inelastic labor supply across indus-

tries.

• Representative firms for each country-industry maximize profit while

hiring labor and buying intermediate goods to produce goods to sell on

the international market.

10I do not focus on international supply chain dynamics per se but include a “ROW”
mainly so that I can accurately model dynamics for sectors for which international imports
comprise a major proportion of inputs.
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• A government in each country levies carbon taxes proportional to emis-

sions on firms and transfers them lump-sum back to consumers. 11

2.2 Producers

I start by introducing the production structure of the economy. Let k ∈ C =

{USA,ROW} be the set of countries in the world, and i ∈ {1, . . . , NE, . . . , N}
be the set of industries, with the first NE industries denoting the energy

sector and the last N − NE industries denoting all other industries. Each

country has a representative firm for each industry in the set, which solves

the following profit maximization problem:

Πik(p, τik) = max
yik,lik,xijk

πi = (1− τik)pikyik − wlik −
∑
l∈C

N∑
j=1

pjlxijkl

s.t.

yik = AiFik(lik, xi,1,k,USA, ...., xi,N,k,USA, xi,1,k,ROW, ...., xi,N,k,ROW)

In other words, firms indexed by i, k take world prices p, and carbon taxes

on production τik as given and choose production levels yik, labor input lik ,

and intermediate inputs xijkl to maximize their profit.

Technology for production is determined by function AiFik. We assume a

constant elasticity of substitution (CES) functional form with several nested

classes of goods. First, we have that

Fi(lik, xi1k, ...., xiNk) =

(
µ

1
η

ikl
η−1
η

ik + α
1
η

Xik
X

η−1
η

ik

) η
η−1

11This is not the only way to structure carbon taxes, but I assume all are borne by the
firm and lump-sum transferred back for ease of analysis for the question at hand.
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I.e., production in country k and industry i depends on a combination

of Xik, which denotes aggregated intermediate goods, and lik, labor. αXik

denotes the CES share parameter for intermediate production, which, in part,

sets factor expenditure share for these goods, and µik denotes the CES share

parameter for labor, which similarly determines factor expenditure share

for labor. In the context of input-output analysis, this would be associated

with so-called ”value-added.”12 These goods can be substituted between each

other according to parameter η, which is the elasticity of substitution (EOS)

between aggregated intermediate goods and labor.

The next level of CES nesting concerns intermediate goods, which are

divided between energy goods Eik and non-energy goods Iik, as in Devulder

and Lisack (2020).

Xik =

((
αEik

αXik

) 1
θ

E
θ−1
θ

ik +

(
αIik

αXik

) 1
θ

I
θ−1
θ

ik

) θ
θ−1

I index the first NE and the last N − NE intermediate goods such that

they denote industries that comprise energy goods Eik and non-energy goods

Iik respectively. We also assign each class of goods its own within class EOS -

σ for energy goods and ϵ for non-energy goods. We will pay specific attention

to σ in later sections’ counterfactuals. In summary, we have

Eik =

(∑
l∈C

NE∑
j=1

(
αijkl

αEik

) 1
σ

x
σ−1
σ

ijkl

) σ
σ−1

and

Iik =

(∑
l∈C

N∑
j=NE+1

(
αijkl

αEik

) 1
ϵ

x
ϵ−1
ϵ

ijkl

) ϵ
ϵ−1

For each country k ∈ C, the input matrix Xk can be visualized as 13

12This would hold true in the case of production functions that are homogeneous of
degree 1.

13For conciseness reasons I have not visualized the differentiation between energy and
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I also ensure industry share parameters sum to their class share parameters

and subsequently to unity with the value-added share parameter. Thus, we

have

∑
l∈C
∑NE

j=1 αijkl = αEik∑
l∈C
∑N

j=NE+1 αijkl = αIik

αEik
+ αIik = αXik

µik + αXik
= 1

∀i ∈ {1, . . . , N}, k ∈ C

I introduce several terms from the producer side that will subsequently

simplify derivations. Solving cost minimization problems to derive unit cost

functions for intermediate goods gives

PEik
=

(∑
l∈C

NE∑
j=1

αijlk

αEik

p1−σ
jl

) 1
1−σ

PIik =

(∑
l∈C

N∑
j=NE+1

αijlk

αIik

p1−ϵ
jl

) 1
1−ϵ

PXik
=

(
αEik

αXik

P 1−θ
Eik

+
αIik

αXik

P 1−θ
Iik

) 1
1−θ

which are price aggregates for the CES baskets of nested goods.

non-energy goods in ROW, but it should be noted that the nesting structure is identical
for inputs from this ”country” as well, with variable elasticities of substitution between
energy and non-energy goods.
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2.3 Consumers

Representative consumer in country k ∈ C takes prices pil, wage wk, firm

profit Πik, and government transfers Tk as given. They maximize their ag-

gregate consumption Ck, which consists of a CES consumption basket com-

prising differentiated goods of both domestic and foreign origin.

max
ci,k,lik

νk,−k
C1−ϕ

k − 1

1− ϕ

s.t.

Ck =
∑
l∈C

N∑
i=1

(
γ

1
ρ

iklc
ρ−1
ρ

ikl

) ρ
ρ−1

and∑
l∈C

N∑
i=1

pilcikl = wk

N∑
i=1

lik +
N∑
i=1

Πik + Tk

In the consumption case, the CES aggregation is parametrized by a single

EOS parameter, ρ, and parameters γikl, denoting share of consumption within

country k of good i originating from country l . νk,−k is an index denoting

the ratio of consumptions between the countries.

∑
l∈C

NE∑
j=1

γikl = νk,−k ∀k ∈ C (1)

The consumer also chooses which firms in their country to allocate his/her

fixed labor supply.

N∑
i=1

lik = l̄k (2)

We can also introduce the price index on the consumption side per coun-

try.
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pCk
=

(∑
l∈C

N∑
j=1

γiklp
1−ρ
jl

) 1
1−ρ

(3)

2.4 Government

Governments in each country k ∈ C levy carbon taxes on sales of firms

within their country and lump-sum transfer this back to consumers. While

this is not necessarily a realistic modeling of fiscal policy, lump-sum transfers

limit distortions to the consumer’s problem and cause only a wealth effect,

providing a cleaner analysis of substitution dynamics on the production side,

the key margin of interest.

N∑
i=1

τikpiyik = Tk (4)

Carbon taxes are proportional to empirical emission intensities, which

I describe in section 3. I model green subsidies to be only falling on the

renewable energy sector.

2.5 Market Clearing Conditions

I described labor market clearing conditions in section 2.3. Goods markets

clear when production in each country-sector is equal to the sum of its use

in final consumption and as intermediates across all country-sectors.

yik =
∑
l∈C

N∑
j=1

xjilk +
∑
l∈C

cilk (5)

A visualization of the resulting input-output structure in matrix form

(with country indices omitted) can be found below:
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Figure 2: Input-output structure visualization

2.6 Solving for an Equilibrium

First-order conditions on the producer’s side give

{lik} : lik = µikFik

(
(1− τik)pikAi

w

)η

(6)

{Xik} : Xik = αXik
Fik

(
(1− τik)pikAi

PXik

)η

(7)
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Solving the nested cost minimization problem to choose optimal CES aggre-

gates gives

{Eik} : Eik =
αEik

αXik

Xik

(
PXik

PEik

)θ

(8)

{Iik} : Iik =
αIik

αXik

Xik

(
PXik

PIik

)θ

(9)

{xijkl} : xijkl =
αijkl

αEik

Eik

(
PEik

pjl

)σ

for j ∈ {1, . . . , NE} (10)

{xijkl} : xijkl =
αijkl

αIik

Iik

(
PIik

pjl

)ϵ

for j ∈ {NE + 1, . . . , N} (11)

Iterating down the nesting structure by plugging in equations (8)-(11) se-

quentially into equation (7) we have

xijkl = αijklFik
((1− τik)pikAi)

η

pσjl
P σ−η
Eik

P η−θ
Xik

for j ∈ {1, . . . , NE} (12)

xijkl = αijklFik
((1− τik)pikAi)

η

pϵjl
P ϵ−η
Iik

P η−θ
Xik

for j ∈ {NE + 1, . . . , N} (13)

I impose a zero profit condition on producers, which gives

(1− τik)pikAiFik = wlik + pXik
Xik

=⇒ (1− τik)pik = w
lik
Fik

+ pXik

Xik

Fik

Plugging in equations (7) and (6), we have

(1− τik)pikAi = wµik

(
(1− τik)pikAi

w

)η

+ pXik
αXik

(
(1− τik)pikAi

PXik

)η

Which gives the final form of the zero profit condition.

(1− τik)pikAi =
(
µikw

1−η + αXik
p1−η
Xik

) 1
1−η (14)
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Finally, we turn to the consumer side, where we solve the FOC for consump-

tion and plug iteratively into the budget constraint, giving

Ck

C-k

= νk,−k

(
PCk

PC-k

)− 1
ϕ

(15)

cikl =
γikl
pρil

wk

∑N
i=1 lik + Tk +Πk

νk,−k

(
PCk

PC-k

)− 1
ϕ
P ρ
Ck

∑
l∈C
∑N

j=1 γjklp
1−ρ
jl

(16)

2.7 Equilibrium Conditions

An equilibrium, is a bundle consisting of prices {pjk}j∈{1,...,N},k∈C, wages

{wk}k∈C, and quantities {yjk}j∈{1,...,N},k∈C that satisfies the following con-

ditions

• Consumer demand is set according to utility maximization problem:

equations (15) and (16)

• Producer intermediate good demand is set according to profit

maximization problem: equations (12) and (13)

• Producer labor demand is set according to profit maximization

problem: equation (6)

• Producers have zero profit: equation (14)

• Government transfers balance : equation (4)

• Goods and labor markets clear: equations (5) and (2).

I set wUSA as the numeraire.
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3 Data

3.1 Motivation

Let us set the baseline economy to be the one such that τik = 0. In this case,

as is customary, I also normalize all prices to be equal to 1. This means that

all units for quantities will be on an expenditure basis in the baseline. I also

set Ai = 1 for the rest of the paper. Note from equations (12) and (12) in

the producer’s problem that this implies that

xbase
ijkl = αijklF

base
ik (17)

Let us define the intermediate factor share of total production in baseline

as

x̂ijkl :=
xbase
ijkl

F base
ik

(18)

Note that this means that

x̂ijkl = αijkl (19)

This implies that the αijkl parameter sets the baseline input-output pro-

duction structure of the economy. Similarly, we have that labor factor share

of total production revenue, defined as

l̂ik :=
lbaseik

F base
ik

would be equal to µik.

Finally, from equations (16), (1) and the consumer budget constraint, we

have that
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cbaseikl = γikl(
N∑
i=1

lbaseik +
N∑
i=1

Πbase
ik + T base

k )

= γiklC
base
k

Setting baseline consumption expenditure share as

ĉikl :=
cbaseikl

Cbase
k

we then have that

ĉikl = γikl

3.2 Input-Output Structure

To calibrate baseline consumption, intermediate good, and labor share pa-

rameters, we require an input-output database containing all these factors at

a granularity that enables one to analyze the green transition meaningfully.

In addition, we would also need consistent emissions intensity estimates at

the same level of granularity to set a realistic carbon tax. As alluded to

previously, typical input-output tables used in the literature, such as those

from BEA, OECD, and WIOD lack the level of industry-level granularity in

key sectors driving the green transition, such as the electricity sector.14

To address this issue, a literature focusing on the environmental impacts

caused by within and between-country economic flows through the supply

chain has formed, leading to the development of augmented input-output ta-

bles, known as ”environmentally extended multi-region input-output databases”

or EE MRIO. No central authority would have the scope to directly collect

data on the breadth of topics that an EE MRIO is meant to cover. So by

14This is an issue that has been noted in Battiston et al. (2022) when motivating the
construction of Climate Policy Relevant Sectors (CPRS). The classification I use here is
intermediate in granularity between CPRS2 and CPRS Granular.
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necessity, the numbers are estimates rather than direct observations. These

augmented tables are meant to reconcile data from various countries’ eco-

nomic statistics services that hold inconsistent industry and sector classifi-

cations and fill that in with granular energy use, emissions, and other envi-

ronmental impact data. Two of the most prominent are Eora26, described

in Lenzen et al. (2013), and EXIOBASE3, described in.Stadler et al. (2018)

I will leverage EXIOBASE 3 in this paper, primarily due to ease of access.

EXIOBASE 3, developed in 2018, is a refinement to the prior EXIOBASE

2 model, providing rectangular Supply-Use Tables (SUTs) for 44 countries

(28 EU members plus 16 major economies) in a 163 industry by 200 product

classification. It stands out as one that is compatible with the UN’s System

of Environmental-Economic Accounting (SEEA), meaning it fulfills certain

requirements for bringing together economic and environmental information

to measure the impact of the economy on the environment holistically.15

I construct a new sectoral aggregation system for this paper to reduce the

163 industries available by default to 31 industries. The reason is twofold.

First, most available industries are not highly material when looking at the

green transition as a whole and can be combined without the loss of a signif-

icant amount of information. Second, as EXIOBASE leverages model-based

estimation and is not direct observation data, small sectors can be domi-

nated by noise. The overall scheme ensures that meaningful sectors for the

green transition are separated while ensuring sectoral size in terms of output

is balanced. Importantly, we combine the many zero-emissions electricity

sectors, such as solar photovoltaic, solar thermal, wind, nuclear, geothermal,

and so on, into a single sector called ”renewable electricity.” Coal, natural

gas, petroleum, and biomass-related energy sources are combined into the

”fossil fuel electricity” sector. We also combine non-electricity-related en-

ergy sources into one sector, which includes natural gas provision, petroleum

refining, and steam/hot water supply. A complete sector crosswalk is pro-

15See European Commission et al. (2014).
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vided in an online appendix, available upon request. As this paper is focused

on dynamics within the US, I set all non-US countries to be one aggregated

sector known as “Rest of World” or “ROW.”

I set αijkl equal to the ratio of intermediate expenditures to gross output

in dollars as outlined in equation (19) and µik similarly according to the ratio

of value-added to gross output.16. Similarly, consumption share parameters

are set according to EXIOBASE consumption shares. This sets the baseline

input-output structure of the simulated economy, and we can check if es-

sential features, such as forward and backward linkages, match between the

simulated economy and the real world. To do this, I first define the total

requirements matrix L, and the direct requirements matrix, D.

The intuition behind the direct requirements table would be that it rep-

resents the intermediate goods needed to produce one unit of output of a

certain sector. This hinges on the assumption that goods are perfect com-

plements, which means this concept is not directly mappable to the model

in the paper unless I set σ = ϵ = η = θ = 0. However, it can be thought of

as an approximation in the static baseline case. This means that

X =
1

Ai

F−1
i (Y) ∼ DY (20)

Equation (18) implies that the direct requirements matrix is approxi-

mated in the model by

Dmodel ∼ X̂ (21)

The direct requirements table represents intermediate good requirements

to the first order, but intermediate goods require yet more intermediate goods

to produce themselves, and this repeats recursively along infinite steps of the

entire supply chain. A classic example in the green energy context would be

16In a setting where production is homogeneous of degree 1, labor expenditure would
capture all value-added

20



the coal required to fuel the electricity production to power an electric car. In

addition, the mining needed to extract this coal would also require gasoline

to fuel mining machinery and so on. The table that would capture these

nth order effects in input-output analysis is known as the total requirements

table. We derive it by plugging in equation (20) into the goods market

clearing condition, equation (5) so that we have

Y = DY + c

=⇒ c ∼ (1−D)−1Y

The Leontief inverse matrix, or total requirements matrix, is defined as

L = (1−D)−1 (22)

And consequently, in the model context, it would be

Lmodel ∼ (1− X̂)−1 (23)

I confirm that the baseline model and empirical data have nearly iden-

tical Leontief matrices following calibration. The forward (upstream) and

backward (downstream) linkages in the economy to each sector would be the

column sums and row sums of the Leontief inverse matrix, respectively.17

3.3 Emissions

Direct emissions of each sector are also set according to the EXIOBASE

database, aggregating carbon dioxide (CO2), methane (CH4), and nitrous

oxide (N2O) together using the Global Warming Potential 100 (GWP100)

method. This weights gases to the extent they contribute to global warming

17One can also construct more targeted measures of linkages by weighting row/column
sums appropriately.
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Figure 3: Direct Emissions Intensity .

over a 100-year horizon, with carbon dioxide weighted as 1.18 This number,

divided by gross output per industry, would correspond to emissions intensity

and is how I calculate the carbon tax per sector. I combine direct emissions

from the production of the good and consumption of the final good for each

18See US Environmental Protection Agency (2022)
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industry and subsequently model all carbon taxes as being levied on the pro-

ducer side, even for emissions that are produced during consumption. This

primarily affects the Petroleum Refining, Gas Production and Distribution,

Coke, Auto Fuel sector as consumers directly produce emissions primarily

through heating and personal transportation. Emissions intensities are sum-

marized in figure 3. Direct emissions are primarily concentrated in fossil fuel

industries, transportation, crop and animal production, and mining.

Figure 4: Backward Linkages to Emissions

Now I turn to forward and backward linkages to emissions, which would

approximate the concept of scope 1+2+3 emissions as used as a standard

measure of transition risk. Results are summarized in figure 4 and 5 for

model-simulated results in baseline, which are almost identical to empirical
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Figure 5: Forward Linkages to Emissions

results (available upon request). In both figures, I differentiate between di-

rect and indirect exposure to emissions by calculating both the linkages to

the emitting sectors and the linkages to the emitting sectors, minus self. This

will separate the emission exposure that occurs purely through network ef-

fects.19 It is evident that some of the most exposed sectors to emissions, such

as fossil fuel electricity production, and petroleum/gas/auto fuel, are exposed

primarily due to direct emissions. However, several sectors are primarily ex-

posed indirectly. This would include Manufacturing of meat products, which

19The exposure through the network effects of emissions may still include exposure to
self in this methodology. However, I have also calculated an indirect exposure measure
that explicitly excludes any exposure to self, even through the supply chain, but the results
are qualitatively similar.
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is upstream from Crop and animal production, and Various Services and Ac-

tivities, a large sector encompassing many service-related activities, which

is downstream from energy sectors/utilities. Another major sector driven

mainly by indirect supply-chain effects is the coal mining industry, as it is

the major supplier for the fossil fuel electricity sector.

3.4 Elasticities

Now that the baseline is set, assumptions on elasticities would determine the

magnitude and nature of reactions to taxes at the industry level. However,

this parameter is not well-understood in the data. Atalay (2017) studies

this in the context of the sectoral contribution to aggregate business cycle

fluctuations using the BEA input-output tables. He uses defense spending

as an exogenous instrument to consistently estimate that elasticities are near

0, with factor share expenditures moving almost 1 to 1 with price shocks.

These results are cited and used subsequently in Baqaee and Farhi (2019)

and Campiglio et al. (2022). However, as mentioned previously, the sectoral

classification of BEA input-output tables is not well suited for studying the

green transition, with key green and fossil fuel sectors combined. So it is

unclear what conclusion to make for elasticities in this paper.

One paper of note, Papageorgiou et al. (2017), explicitly studies elas-

ticities between green and non-green energy sources. He uses a panel from

26 countries for the period 1995-2009 derived from the World Input-Output

Database and other inputs to estimate an elasticity of substitution parame-

ter between clean and dirty energy between 2 and 3, which is much higher

than the other estimates. However, the study acknowledges that it may be

affected by endogeneity. In addition, it suffers from the same drawbacks of

using the WIOD in studying the green transition, instead utilizing an energy

addendum to estimate effects. Stern (2012) conducts a meta-analysis of the

narrower case of inter-fuel substitutabilities, and finds a wide range of val-

ues, between 0 and 8 for elasticities between gas, oil, electricity, and so on.

25



However, it does not explicitly study green energy substitutability.

Given the wide range of potential estimates for this key parameter, I allow

energy elasticity of substitution σ to vary between the range of potential

estimates, from a low of 0.2, to a high of 4.7, and examine its effect on

the distribution and magnitude of industry value-added changes. As for

elasticities of other intermediate goods and labor value-added, I follow Atalay

(2017) and Baqaee and Farhi (2019) in assuming they are, loosely speaking,

complements and set η = θ = ϵ = .1. This adds the additional advantage that

counterintuitive results, such as transportation industries substituting fuel

for labor, would not occur. I set ρ = 0.8 following Baqaee and Farhi (2019)

and Devulder and Lisack (2020). However, I conduct a robustness analysis

in appendix A where I vary the energy EOS in consumption together with its

elasticity in production, essentially assuming that energy types are similarly

substitutable in final consumption as when they are used in intermediate

inputs. Finally, I set ϕ = 2 as a common value in the literature.20

Parameter Description Estimate
σ Energy EOS 0.2− 4.7
ϵ Non-Energy EOS 0.1
η Energy to non-Energy EOS 0.1
θ Value-added to Intermediate Goods EOS 0.1
ρ Consumption EOS 0.8
ϕ Coefficient of Risk Aversion 2.0

20The primary margin ϕ would affect would be inter-country transfers, which are not a
major focus of this paper.
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4 Results

4.1 Carbon Tax

4.1.1 Sensitivity to Energy EOS

I impose varying levels of production carbon taxes upon the simulated econ-

omy, utilizing a range of assumptions for the energy elasticity of substitution

in production. I initially focus on a $25/ ton CO2 tax first in figure 6 since

this is most relevant for a short to mid-term analysis, but results roughly

scale proportionally for larger carbon taxes, as I will show later.2122 A mod-

est $25/ton carbon tax may also be especially fitting to study within this

framework since carbon tax policies will likely start incrementally and later

ramp up, while this model, focused on comparative statics, does not include

some features more important for long-term dynamics such as intertemporal

investment decisions and technological change.

Sector-level losses in percentage terms are concentrated in highly emit-

ting sectors such as fossil fuel electricity and petroleum refining, as well as

moderate-emissions sectors that supply to these sectors, such as coal mining,

and extraction of liquid fossil fuels. On the other hand, renewable electricity

shows large increases in sector-level value-added. Sectors downstream from

renewable electricity, such as mining and quarrying of other stones and min-

erals, water transport, and basic plastics, also show an increase. However, the

magnitude largely depends on the elasticity of substitution between energy

sources, with higher substitutability softening the impact on the aggregate

economy, but more sharply impacting fossil fuel-related sectors.

This readily corresponds to intuition, in that an economy that has an

easier time substituting from fossil fuel energy in the face of a carbon tax

21For imported goods from “ROW”, I assume the same carbon tax as for domestic, US
goods to ensure no arbitrage opportunities.

22I solve the series of nonlinear equations described in section 2.7 using the fmincon

function in Matlab.
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Figure 6: Percentage changes, varying energy EOS σ.

would be better off on aggregate, with a significant jump in value-added in

the renewable energy sector. However, it would suffer large losses in emitting

sectors that are quickly replaced by those renewables. On the other hand,

when it is difficult to switch from fossil fuels, these industries suffer less.

However, the entire economy drops in value-added as industries cannot avoid
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paying steep carbon taxes for dirty energy they cannot switch away from. At

the same time, the renewable energy sector and related industries’ rise is less

pronounced, as it no longer takes up the same amount of slack in energy

demand. This reinforces that the nature of transition risk, both at the sector

level and on aggregate, is largely dependent on this key unknown parameter,

which can be thought of intuitively as an ”ease of transition.”

In a robustness analysis shown in appendix A, I examine the extent to

which changing energy EOS on the demand side at the same time as chang-

ing it on the production side modifies the results. This may be realistic as

consumers may have a comparable willingness to substitute energy sources as

firms do. However, the difference is not precisely estimated in the literature.23

I find that qualitatively, the same results hold, with the effect magnified since

consumers can more easily shift away in higher EOS situations. Indeed, in

the modest carbon tax being studied, fossil fuel energy sources are almost

50% smaller in terms of real value-added under higher EOS assumptions.

On the other hand, lower EOS assumptions for consumers predictably lead

to even greater rigidity than before, with sectoral reshuffling being almost

negligible. This highlights the importance of identifying the potential rich

heterogeneity in this parameter.

When looking at total loss as opposed to percentage loss within sector

in figure 7, the greatest impact is within the service sector. This may be

surprising since emissions intensity in this sector is low and the percentage

loss in this sector is relatively small. However, this sector holds by far the

largest real value-added and output in the economy and is affected indirectly

through supply-chain linkages. I will explicitly decompose the direct and

indirect effects in section 4.1.2.

This introduces a second major insight of this paper, in that while tran-

sition risk is concentrated in fossil fuel-related industries, absolute levels of

23For a discussion of consumer elasticity of natural gas versus electricity, for example,
see Bernstein and Griffin (2006).
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Figure 7: Absolute changes, varying energy EOS σ.

transition risk are highest in large sectors that are indirectly affected, and

these sectors are the ones that drive the aggregate losses to the economy.

Therefore, it is not enough to only look at emissions intensity when evalu-

ating transition risk at the industry level, but also a measure that includes

linkages.
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Figure 8: Aggregate changes, varying energy EOS σ.

In figure 8, one can see that when aggregating all sectors of the economy,

the energy elasticity of substitution remains an important parameter - a

higher substitutability between energy sources leads to a lower value-added

drop. However, the difference is perhaps lower than might be expected since,

in all scenarios of the EOS, the rise of green and decline of brown partially

offset each other.

4.1.2 Direct vs. Indirect Decomposition

In the prior section, we observed that indirect effects can sometimes be more

important in determining transition risk than direct emissions, an insight

shared with Devulder and Lisack (2020) and Campiglio et al. (2022). Now

I calculate the relative importance of these indirect effects to direct effects

on the sector from its own carbon tax. To do this, I conduct a “LOCO” or

“leave one covariate out”-style analysis, commonly used in machine learning

feature importance analysis to assign variable contributions in a model. 24

24See, for example, Molnar et al. (2018).
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Figure 9: Decomposing aggregate changes.

For each sector, I calculate the value-added changes from taxing only that

sector, which I denote as the direct effects of taxation. I then subtract this

from the total value-added change in that sector from imposing a carbon tax

on all sectors. This difference would represent the indirect effect of taxation,

which would encapsulate the effects of the taxes from other sectors onto the

sector in question. 25

Results are pictured in figure 15 for a mid-range selection of energy elas-

ticity, but results generalize. Certain sectors’ value-added changes are almost

entirely driven by indirect effects, such as coal mining and extraction of liq-

uid fossil fuels. For some sectors, such as petroleum refining and fossil fuel

electricity indirect effects go in the opposite way since taxes on sectors for

which they substitute increase the demand for their own products. Another

interesting example of direct and indirect effects going the opposite way is

in the water transport sector, which is a supplier to the renewable electricity

25Shapley analysis has become a more dominant feature importance calculation method-
ology in the literature due to several useful axiomatic properties as described in Lundberg
and Lee (2017), but LOCO is more directly interpretable in this context.

32



sector, but itself is subject to a carbon tax due to its direct emissions.

When looking at sectors by the level of real value-added change, as de-

picted in figure 16 in the appendix, one can again see that indirect effects

dominate in key industries, such as in the service and real estate sectors. The

aggregate effect is encapsulated in 9, which shows the outsize effect indirect

effects have on aggregate value-added changes over and above the direct ef-

fects at the sector level from individual carbon taxes - around 2/3 − 4/5 of

aggregate value-added changes are indirect. Interestingly, these seem also

to vary based on the elasticity of substitution, with higher complementar-

ity causing a higher proportion of indirect effects due to the failure of the

economy to easily adjust away from emitting goods.

4.1.3 Relationship with Emissions-based Proxy Measures

With the increasing demand for robust environmental disclosure, such as

the ones outlined by the Task Force on Climate-Related Financial Disclo-

sures (TCFD), there is a strong incentive for institutions of a wide variety of

stripes to project transition-related risks.26 Indeed, the Network for Green-

ing the Financial System (NGFS) has also released principles recommending

so-called ”climate scenario analysis” for climate risk management purposes.

Several sophisticated scenario analysis approaches at central banks such as

Vermeulen et al. (2021) and Alogoskoufis et al. (2021) have used linear trans-

formation of scope 1+2+3 emissions. However, one might expect institutions

with less modeling expertise to use even more simplified measures, such as

scope 1 or scope 1+2, especially considering the relative difficulty of acquir-

ing data on firm-level scope 3 emissions. A key question would be how close

these measures, or linear transformations of them, come to approximating

the true economic damages, especially considering the potentially complex

nonlinear dynamics outlined above.

To answer this question, I run linear regressions of sectoral scope 1, 1+2,

26For further context, see Pástor et al. (2022).
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and 1+2+3 emissions on real value-added percentage change measures de-

rived earlier. I then evaluate the accuracy in terms of R2 and rank-ordering

ability in terms of Somer’s D. The measures of scope 1, 1+2, and 1+2+3

emissions are derived from EXIOBASE as earlier, with scope 1+2 derived

using the direct requirements table and scope 1+2+3 emissions derived from

the Leontief inverse matrix in the usual way.

Figure 10: Accuracy/rank-ordering when regressing emissions-based mea-
sures on real value-added percentage change from model.

Accuracy and rank-ordering measures from the regressions are shown in

figure 10 as they vary significantly based on assumptions regarding energy

EOS. Accuracy tends to be relatively low except when high energy com-

plementarity is assumed. This is because low energy EOS would dampen

nonlinear dynamics from intermediate good substitution. The same holds

for the rank-ordering ability of scope 1 and scope 1+2 as this is highly de-

pendent on both downstream and upstream dynamics. For example, the coal

mining sector is shown to have some of the highest transition risks of any

sector, corresponding to intuition, but features only moderate scope 1 and

scope 1+2 emissions. Indeed, its transition risk profile is primarily due to
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exposure to its high transition-risk customer, fossil fuel electricity. This ex-

posure scales with the transition risk of its downstream customer, which in

turn is proportional to energy EOS.

On the other hand, scope 1+2+3 emissions, while still relatively poor in

accuracy under most EOS assumptions, is consistently high-performing in

terms of rank ordering performance. This means that sectors with higher

scope 1+2+3 emissions are consistently predicted to have higher transition

risk in the model under any EOS assumption. This has implications for ESG

ratings as it has been shown that many investors concentrate on rankings

rather than levels, see Rzeźnik et al. (2021). However, it still falls significantly

short as a measure for accurate linear prediction due to strong nonlinear

dynamics - for visualization, see figure 17. In addition, it cannot predict to

any degree the upside of transition risk, such as increases in the renewable

energy and linked sectors.

4.2 Green Subsidy

We now analyze a ”comparable” green subsidy to the modest carbon tax

above. Mechanically, I set it proportional to sales in the renewable electricity

sector and finance it through a lump-sum tax from consumers. First, I find

the level of green subsidy that would cause the fossil fuel electricity sector to

shrink by the same amount as the $25/ton CO2 tax studied earlier. As this

model does not include components related to long-term dynamics such as

investment and technological growth/R&D, a modest policy more likely to

be implemented in the short to mid-term is the most appropriate to study,

similar to the carbon tax discussed earlier.

In figure 11 it is apparent that even large subsidies to green have a rel-

atively muted effect on fossil fuel electricity decline, even with high substi-

tutability of energy inputs. Indeed, the real value-added percentage decline

bottoms out at around 30% in this sector.27 A subsidy of around 300% to

27The ”bottoming-out” effect is due to the inelasticity of consumer demand. In robust-
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Figure 11: Sectoral real value-added percentage change by green subsidy size
and energy EOS.

renewables causes a roughly similar decline as the $25/ton CO2 tax at high

EOS in this sector, so I will focus on this level for a more detailed decompo-

sition but results roughly scale. The full results are shown in figure ?.

Again, results are highly dependent on energy EOS, with 120% − 750%

increases in the renewable sector from the 300% subsidy. Indeed, this policy

features mostly upside in terms of real value-added, with several green-linked

ness analysis similar to the one done for the carbon tax, when energy EOS on the demand
side is adjusted at the same time as on the producer’s side, green subsidies can cause a
higher drop in real value-added for fossil fuel-linked industries. However, qualitatively, the
results of this section hold and the carbon tax remains more effective per-dollar in causing
this drop.
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Figure 12: Percentage changes, varying energy EOS σ.

sectors increasing. This includes both upstream and downstream linkages,

and sometimes both combined. Interestingly, when energy EOS is high, sec-

tors downstream from petroleum such as Air Transport and Water Transport

quickly switch to renewable electricity, which carries with it the potentially

strong assumption that airplanes, ships, and vehicles can quickly electrify.
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This may point to the usefulness of estimating custom elasticities of substi-

tution at the fine sector level to capture these considerations. On the other

hand, upstream sectors to renewable electricity also benefit, such as Mining

and quarrying of other stones and minerals, which includes rare earth miner-

als essential for solar PV production and other materials necessary for clean

energy power plants. Once again, this increase is highly contingent on energy

EOS.

Figure 13: Absolute value of government transfer for green subsidy, varying
energy EOS σ. Black line denotes Ti = 0.1 , transfer for $25/ton CO2 tax
under all EOS scenarios.

Clearly, this policy strongly boosts green energy-linked sectors and re-

duces the value-added of the high-emissions fossil fuel electricity sector by
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a similar degree to the $25/ton CO2 tax. However, one may ask whether it

reduces this high-emissions sector as effectively on a per-dollar basis as the

carbon tax. To do this, I compare the absolute value of government transfer

Ti in the green subsidy vs. carbon tax case.

In figure 13, it is clear that government transfer sizes are generally larger

in the subsidy case, with the $25/ton CO2 tax government transfer level de-

noted under the black line. The 300% subsidy transfer is around 70% higher

in higher EOS cases where it is ”equivalent” to the carbon tax. So, in a

strictly budgetary sense, in this framework, the carbon tax is better at re-

ducing value-added in the high EOS segments. This is perhaps unsurprising

given the results in section 4.1.2 - despite the importance of indirect effects,

direct effects still account for some portion of the comparative statics. Even

in the higher energy EOS cases, there is not a 100% pass-through of the

subsidy, thus leading to the dampened effect on the fossil fuel sectors. This

provides macro-level evidence in line with empirical findings such as in Gu-

gler et al. (2021), which supports the cost-effectiveness of carbon taxes over

renewable subsidies.

However, it is important to keep in mind the caveats of these results.

As mentioned earlier, this model is not designed to consider some critical

factors that motivate clean energy subsidies, most notably R&D. Indeed,

subsidies have been shown to be instrumental in spurring innovation and

further maturing clean energy technologies. For example, solar photovoltaic

energy costs have gone down by around 89% since 2010 - see Johnstone et al.

(2010) and Gillingham et al. (2009) for a more detailed consideration of the

topic. Hence, readers should interpret this result as most relevant for the

short-to-mid term.
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5 Conclusion

I study the effects of carbon taxes on the sectoral distribution of value in the

economy, leveraging an empirically grounded dynamic model of input-output

supply chain relationships. Crucially, this input-output structure contains

the appropriate sectoral granularity to be able to meaningfully study the

path of the green transition, with renewable electricity sources separated

from fossil fuel sources. This allows me to explicitly model the primary path

to net zero, the electrification of the economy to renewable sources, as well

as study policies such as green subsidies, increasingly prominent in the US

at both the federal and state/local level.

The results from this new sectoral classification enable me to pinpoint a

key parameter upon which the transition hinges - the elasticity of substitution

to green sources, most materially in the energy sector. As the literature

identifying this parameter is still in the nascent stage, there is a large level

of uncertainty as to the exact nature of the transition – whether it will be

a rapid switch to renewables with a sharp rise in the renewable electricity-

related sectors and a drop in fossil fuel-linked sectors, or a slower transition

that features fewer sharp swings but an overall aggregate drop due to the

failure to adjust.

This EOS parameter is closely tied to the concept known in popular par-

lance as the ”green premium”- what the additional cost would be to switch

over to green compared to the conventional source. An economy with higher

green premiums across the board would likely be associated with more com-

plementarity in its green vs. non-green intermediate and final goods.

It is important to keep in mind that the broad macro-based point of view

taken in the paper would necessarily hide significant heterogeneity at a more

granular level. For example, there is likely no “single” elasticity of energy

substitution parameter, instead being highly context-dependent, especially in

the case of renewable energy sources. Many areas have ample solar and wind

resources and the appropriate infrastructure to transition to green quickly
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and cost-efficiently. In contrast, other locales may have significantly more

difficulties or require investment in expensive infrastructure such as costly

batteries or long-distance grid powerlines transporting renewable energy to

where it is scarce. In addition, different green vs. non-green classes of goods

likely have significantly different elasticities of substitution. For example,

green substitutes for concrete are only in the early stages of research, while

renewable electricity is a relatively mature technology. As such, identify-

ing elasticities of substitution may be the most pertinent research task, as

opposed to a single elasticity.

Several other caveats are worth mentioning. As the model is focused on

the industrial sector as the unit of granularity, within-sector changes due

to carbon tax imposition would not be examined here. For example, firms

within an industry may take mitigating actions that would reduce emissions,

even given the same mix of intermediate inputs through increased efficiency or

changing production processes. This may soften the impact of the transition

compared to what is calculated, but including this would require estimating a

within-sector emissions response function that would respond in equilibrium

to carbon taxes, which is not well-known in existing studies. This model is

also necessarily more focused on short-term effects. This is because it does

not include some features that would be important for long-term dynamics,

such as intertemporal investment decisions and technological change, which

has implications for the green subsidy analysis. In addition, there are likely

other transition and climate-affected macroeconomic effects, such as would

be captured in an Integrated Assessment Model, that are not considered

here either.28 In this sense, this model would not be a standalone ”climate

scenario analysis’” of the economy but would instead be a component of a

larger framework. However, further research must be done to reconcile this

model with higher and lower-level models within such a framework.

The production network approach taken in this paper exposes the oth-

28See Calvin et al. (2019) for an example of a prominent IAM.
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erwise hidden magnitude of indirect effects, which in this paper comprise

around 2/3 − 4/5 of aggregate effects depending on the elasticity of sub-

stitution. This reinforces the results from other studies of carbon taxes in

production networks, such as Devulder and Lisack (2020) and Campiglio

et al. (2022), but with a novel “LOCO”-style approach in its calculation that

differentiates the direct effect from a carbon tax on the single industry versus

other, network effects. The work here suggests that climate scenario anal-

yses that do not take the indirect effects of carbon taxes into account may

not provide a good approximation to aggregate and sector-specific transition

risk. We show that scope 3 emissions provides a relatively high rank-ordering

of transition risk for downside risk (but not upside benefit), but misses in

important regards with regards to accuracy when linearly projecting emis-

sions to economic factors due to the nonlinear dynamics uncovered by this

model. This is especially true when elasticities of substitution are high, pro-

viding conditions when reduced-form climate scenario analyses would best

approximate a fully specified model.

While this paper takes a macro approach, the insights on the outsize

importance of supply chain effects carry over to the firm level. Indeed, the

results have direct implications for measuring commercial transition risk, but

it is important to be aware of the potentially significant heterogeneity among

firms. While sector-level considerations are perhaps the most significant mar-

gin along which firms vary, they may also be in significantly different stages

of the transition compared to their peers. They may have fewer “stranded

assets” and more adoption of green substitutes in their supply chains. This

could be influenced by their regulatory environment, corporate governance,

investor pressure, and other factors, such as, for example, a different ease of

substitutability to green intermediates in their individual supply chains. In

any case, another important task for future researchers would be to identify

this parameter not only at the broad macro-level, but at a sector, geography,

or even individual firm level.
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A Varying Energy EOS in Consumption

Figure 14: Percentage changes, varying energy EOS σ in both production
and consumption.
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B Additional Figures and Tables

Figure 15: Percentage changes.
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Figure 16: Absolute changes.
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Figure 17: Accuracy/rank-ordering when regressing emissions-based mea-
sures on real value-added percentage change from model.
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